Development of Portable E-Nose System for Fast Diagnosis of Whitefly Infestation in Tomato Plant in Greenhouse
An electronic nose (E-nose) system equipped with a gas sensor array and real-time control panel was developed for a fast diagnosis of whitefly infestation in tomato plants. Profile changes of volatile organic compounds (VOCs) released from tomato plants under different treatments (i.e., whitefly inf...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8c95a183ee648ebb3aa858a3e6c0d2e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | An electronic nose (E-nose) system equipped with a gas sensor array and real-time control panel was developed for a fast diagnosis of whitefly infestation in tomato plants. Profile changes of volatile organic compounds (VOCs) released from tomato plants under different treatments (i.e., whitefly infestation, mechanical damage, and no treatment) were successfully determined by the developed E-nose system. A rapid sensor response with high sensitivity towards whitefly-infested tomato plants was observed in the E-nose system. Results of principal component analysis (PCA) and hierarchical clustering analysis (HCA) indicated that the E-nose system was able to provide accurate distinguishment between whitefly-infested plants and healthy plants, with the first three principal components (PCs) accounting for 87.4% of the classification. To reveal the mechanism of whitefly infestation in tomato plants, VOC profiles of whitefly-infested plants and mechanically damaged plants were investigated by using the E-nose system and GC-MS. VOCs of 2-nonanol, oxime-, methoxy-phenyl, and n-hexadecanoic acid were only detected in whitefly-infested plants, while compounds of dodecane and 4,6-dimethyl were only found in mechanically damaged plant samples. Those unique VOC profiles of different tomato plant groups could be considered as bio-markers for diagnosing different damages. Moreover, the E-nose system was demonstrated to have the capability to differentiate whitefly-infested plants and mechanically damaged plants. The relationship between sensor performance and VOC profiles confirmed that the developed E-nose system could be used as a fast and smart device to detect whitefly infestation in greenhouse cultivation. |
---|