Hybrid modeling and prediction of oyster norovirus outbreaks
This paper presents a hybrid model for predicting oyster norovirus outbreaks by combining the Artificial Neural Networks (ANNs) and Principal Component Analysis (PCA) methods and using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite remote-sensing data. Specifically, 10 years (20...
Guardado en:
Autores principales: | Shima Shamkhali Chenar, Zhiqiang Deng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8d3c743924440979b5e000fa1efb0a8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Exploratory study on characteristics of oyster shell and eggshell quality in Chile
por: Arenas,Carolina, et al.
Publicado: (2018) -
Morphometric relationships and growth models for the oyster Crassostrea corteziensis cultivated at the southeastern coast of the Gulf of California, Mexico
por: Góngora-Gómez,Andrés M., et al.
Publicado: (2018) -
Predicted norovirus resurgence in 2021–2022 due to the relaxation of nonpharmaceutical interventions associated with COVID-19 restrictions in England: a mathematical modeling study
por: Kathleen M. O’Reilly, et al.
Publicado: (2021) -
Dynamic model analysis of Norovirus transmissionwith nonlinear incidence
por: Haiyan QIN, et al.
Publicado: (2021) -
Structural Studies on the Shapeshifting Murine Norovirus
por: Michael B. Sherman, et al.
Publicado: (2021)