Flower lose, a cell fitness marker, predicts COVID‐19 prognosis

Abstract Risk stratification of COVID‐19 patients is essential for pandemic management. Changes in the cell fitness marker, hFwe‐Lose, can precede the host immune response to infection, potentially making such a biomarker an earlier triage tool. Here, we evaluate whether hFwe‐Lose gene expression ca...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Michail Yekelchyk, Esha Madan, Jochen Wilhelm, Kirsty R Short, António M Palma, Linbu Liao, Denise Camacho, Everlyne Nkadori, Michael T Winters, Emily S Rice, Inês Rolim, Raquel Cruz‐Duarte, Christopher J Pelham, Masaki Nagane, Kartik Gupta, Sahil Chaudhary, Thomas Braun, Raghavendra Pillappa, Mark S Parker, Thomas Menter, Matthias Matter, Jasmin Dionne Haslbauer, Markus Tolnay, Kornelia D Galior, Kristina A Matkwoskyj, Stephanie M McGregor, Laura K Muller, Emad A Rakha, Antonio Lopez‐Beltran, Ronny Drapkin, Maximilian Ackermann, Paul B Fisher, Steven R Grossman, Andrew K Godwin, Arutha Kulasinghe, Ivan Martinez, Clay B Marsh, Benjamin Tang, Max S Wicha, Kyoung Jae Won, Alexandar Tzankov, Eduardo Moreno, Rajan Gogna
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/f8eb078fb27a469bb4350f69d131fd6a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f8eb078fb27a469bb4350f69d131fd6a
record_format dspace
spelling oai:doaj.org-article:f8eb078fb27a469bb4350f69d131fd6a2021-11-08T09:27:45ZFlower lose, a cell fitness marker, predicts COVID‐19 prognosis1757-46841757-467610.15252/emmm.202013714https://doaj.org/article/f8eb078fb27a469bb4350f69d131fd6a2021-11-01T00:00:00Zhttps://doi.org/10.15252/emmm.202013714https://doaj.org/toc/1757-4676https://doaj.org/toc/1757-4684Abstract Risk stratification of COVID‐19 patients is essential for pandemic management. Changes in the cell fitness marker, hFwe‐Lose, can precede the host immune response to infection, potentially making such a biomarker an earlier triage tool. Here, we evaluate whether hFwe‐Lose gene expression can outperform conventional methods in predicting outcomes (e.g., death and hospitalization) in COVID‐19 patients. We performed a post‐mortem examination of infected lung tissue in deceased COVID‐19 patients to determine hFwe‐Lose’s biological role in acute lung injury. We then performed an observational study (n = 283) to evaluate whether hFwe‐Lose expression (in nasopharyngeal samples) could accurately predict hospitalization or death in COVID‐19 patients. In COVID‐19 patients with acute lung injury, hFwe‐Lose is highly expressed in the lower respiratory tract and is co‐localized to areas of cell death. In patients presenting in the early phase of COVID‐19 illness, hFwe‐Lose expression accurately predicts subsequent hospitalization or death with positive predictive values of 87.8–100% and a negative predictive value of 64.1–93.2%. hFwe‐Lose outperforms conventional inflammatory biomarkers and patient age and comorbidities, with an area under the receiver operating characteristic curve (AUROC) 0.93–0.97 in predicting hospitalization/death. Specifically, this is significantly higher than the prognostic value of combining biomarkers (serum ferritin, D‐dimer, C‐reactive protein, and neutrophil–lymphocyte ratio), patient age and comorbidities (AUROC of 0.67–0.92). The cell fitness marker, hFwe‐Lose, accurately predicts outcomes in COVID‐19 patients. This finding demonstrates how tissue fitness pathways dictate the response to infection and disease and their utility in managing the current COVID‐19 pandemic.Michail YekelchykEsha MadanJochen WilhelmKirsty R ShortAntónio M PalmaLinbu LiaoDenise CamachoEverlyne NkadoriMichael T WintersEmily S RiceInês RolimRaquel Cruz‐DuarteChristopher J PelhamMasaki NaganeKartik GuptaSahil ChaudharyThomas BraunRaghavendra PillappaMark S ParkerThomas MenterMatthias MatterJasmin Dionne HaslbauerMarkus TolnayKornelia D GaliorKristina A MatkwoskyjStephanie M McGregorLaura K MullerEmad A RakhaAntonio Lopez‐BeltranRonny DrapkinMaximilian AckermannPaul B FisherSteven R GrossmanAndrew K GodwinArutha KulasingheIvan MartinezClay B MarshBenjamin TangMax S WichaKyoung Jae WonAlexandar TzankovEduardo MorenoRajan GognaWileyarticlebiomarkercell fitnessCOVID‐19flowerprognosisMedicine (General)R5-920GeneticsQH426-470ENEMBO Molecular Medicine, Vol 13, Iss 11, Pp n/a-n/a (2021)
institution DOAJ
collection DOAJ
language EN
topic biomarker
cell fitness
COVID‐19
flower
prognosis
Medicine (General)
R5-920
Genetics
QH426-470
spellingShingle biomarker
cell fitness
COVID‐19
flower
prognosis
Medicine (General)
R5-920
Genetics
QH426-470
Michail Yekelchyk
Esha Madan
Jochen Wilhelm
Kirsty R Short
António M Palma
Linbu Liao
Denise Camacho
Everlyne Nkadori
Michael T Winters
Emily S Rice
Inês Rolim
Raquel Cruz‐Duarte
Christopher J Pelham
Masaki Nagane
Kartik Gupta
Sahil Chaudhary
Thomas Braun
Raghavendra Pillappa
Mark S Parker
Thomas Menter
Matthias Matter
Jasmin Dionne Haslbauer
Markus Tolnay
Kornelia D Galior
Kristina A Matkwoskyj
Stephanie M McGregor
Laura K Muller
Emad A Rakha
Antonio Lopez‐Beltran
Ronny Drapkin
Maximilian Ackermann
Paul B Fisher
Steven R Grossman
Andrew K Godwin
Arutha Kulasinghe
Ivan Martinez
Clay B Marsh
Benjamin Tang
Max S Wicha
Kyoung Jae Won
Alexandar Tzankov
Eduardo Moreno
Rajan Gogna
Flower lose, a cell fitness marker, predicts COVID‐19 prognosis
description Abstract Risk stratification of COVID‐19 patients is essential for pandemic management. Changes in the cell fitness marker, hFwe‐Lose, can precede the host immune response to infection, potentially making such a biomarker an earlier triage tool. Here, we evaluate whether hFwe‐Lose gene expression can outperform conventional methods in predicting outcomes (e.g., death and hospitalization) in COVID‐19 patients. We performed a post‐mortem examination of infected lung tissue in deceased COVID‐19 patients to determine hFwe‐Lose’s biological role in acute lung injury. We then performed an observational study (n = 283) to evaluate whether hFwe‐Lose expression (in nasopharyngeal samples) could accurately predict hospitalization or death in COVID‐19 patients. In COVID‐19 patients with acute lung injury, hFwe‐Lose is highly expressed in the lower respiratory tract and is co‐localized to areas of cell death. In patients presenting in the early phase of COVID‐19 illness, hFwe‐Lose expression accurately predicts subsequent hospitalization or death with positive predictive values of 87.8–100% and a negative predictive value of 64.1–93.2%. hFwe‐Lose outperforms conventional inflammatory biomarkers and patient age and comorbidities, with an area under the receiver operating characteristic curve (AUROC) 0.93–0.97 in predicting hospitalization/death. Specifically, this is significantly higher than the prognostic value of combining biomarkers (serum ferritin, D‐dimer, C‐reactive protein, and neutrophil–lymphocyte ratio), patient age and comorbidities (AUROC of 0.67–0.92). The cell fitness marker, hFwe‐Lose, accurately predicts outcomes in COVID‐19 patients. This finding demonstrates how tissue fitness pathways dictate the response to infection and disease and their utility in managing the current COVID‐19 pandemic.
format article
author Michail Yekelchyk
Esha Madan
Jochen Wilhelm
Kirsty R Short
António M Palma
Linbu Liao
Denise Camacho
Everlyne Nkadori
Michael T Winters
Emily S Rice
Inês Rolim
Raquel Cruz‐Duarte
Christopher J Pelham
Masaki Nagane
Kartik Gupta
Sahil Chaudhary
Thomas Braun
Raghavendra Pillappa
Mark S Parker
Thomas Menter
Matthias Matter
Jasmin Dionne Haslbauer
Markus Tolnay
Kornelia D Galior
Kristina A Matkwoskyj
Stephanie M McGregor
Laura K Muller
Emad A Rakha
Antonio Lopez‐Beltran
Ronny Drapkin
Maximilian Ackermann
Paul B Fisher
Steven R Grossman
Andrew K Godwin
Arutha Kulasinghe
Ivan Martinez
Clay B Marsh
Benjamin Tang
Max S Wicha
Kyoung Jae Won
Alexandar Tzankov
Eduardo Moreno
Rajan Gogna
author_facet Michail Yekelchyk
Esha Madan
Jochen Wilhelm
Kirsty R Short
António M Palma
Linbu Liao
Denise Camacho
Everlyne Nkadori
Michael T Winters
Emily S Rice
Inês Rolim
Raquel Cruz‐Duarte
Christopher J Pelham
Masaki Nagane
Kartik Gupta
Sahil Chaudhary
Thomas Braun
Raghavendra Pillappa
Mark S Parker
Thomas Menter
Matthias Matter
Jasmin Dionne Haslbauer
Markus Tolnay
Kornelia D Galior
Kristina A Matkwoskyj
Stephanie M McGregor
Laura K Muller
Emad A Rakha
Antonio Lopez‐Beltran
Ronny Drapkin
Maximilian Ackermann
Paul B Fisher
Steven R Grossman
Andrew K Godwin
Arutha Kulasinghe
Ivan Martinez
Clay B Marsh
Benjamin Tang
Max S Wicha
Kyoung Jae Won
Alexandar Tzankov
Eduardo Moreno
Rajan Gogna
author_sort Michail Yekelchyk
title Flower lose, a cell fitness marker, predicts COVID‐19 prognosis
title_short Flower lose, a cell fitness marker, predicts COVID‐19 prognosis
title_full Flower lose, a cell fitness marker, predicts COVID‐19 prognosis
title_fullStr Flower lose, a cell fitness marker, predicts COVID‐19 prognosis
title_full_unstemmed Flower lose, a cell fitness marker, predicts COVID‐19 prognosis
title_sort flower lose, a cell fitness marker, predicts covid‐19 prognosis
publisher Wiley
publishDate 2021
url https://doaj.org/article/f8eb078fb27a469bb4350f69d131fd6a
work_keys_str_mv AT michailyekelchyk flowerloseacellfitnessmarkerpredictscovid19prognosis
AT eshamadan flowerloseacellfitnessmarkerpredictscovid19prognosis
AT jochenwilhelm flowerloseacellfitnessmarkerpredictscovid19prognosis
AT kirstyrshort flowerloseacellfitnessmarkerpredictscovid19prognosis
AT antoniompalma flowerloseacellfitnessmarkerpredictscovid19prognosis
AT linbuliao flowerloseacellfitnessmarkerpredictscovid19prognosis
AT denisecamacho flowerloseacellfitnessmarkerpredictscovid19prognosis
AT everlynenkadori flowerloseacellfitnessmarkerpredictscovid19prognosis
AT michaeltwinters flowerloseacellfitnessmarkerpredictscovid19prognosis
AT emilysrice flowerloseacellfitnessmarkerpredictscovid19prognosis
AT inesrolim flowerloseacellfitnessmarkerpredictscovid19prognosis
AT raquelcruzduarte flowerloseacellfitnessmarkerpredictscovid19prognosis
AT christopherjpelham flowerloseacellfitnessmarkerpredictscovid19prognosis
AT masakinagane flowerloseacellfitnessmarkerpredictscovid19prognosis
AT kartikgupta flowerloseacellfitnessmarkerpredictscovid19prognosis
AT sahilchaudhary flowerloseacellfitnessmarkerpredictscovid19prognosis
AT thomasbraun flowerloseacellfitnessmarkerpredictscovid19prognosis
AT raghavendrapillappa flowerloseacellfitnessmarkerpredictscovid19prognosis
AT marksparker flowerloseacellfitnessmarkerpredictscovid19prognosis
AT thomasmenter flowerloseacellfitnessmarkerpredictscovid19prognosis
AT matthiasmatter flowerloseacellfitnessmarkerpredictscovid19prognosis
AT jasmindionnehaslbauer flowerloseacellfitnessmarkerpredictscovid19prognosis
AT markustolnay flowerloseacellfitnessmarkerpredictscovid19prognosis
AT korneliadgalior flowerloseacellfitnessmarkerpredictscovid19prognosis
AT kristinaamatkwoskyj flowerloseacellfitnessmarkerpredictscovid19prognosis
AT stephaniemmcgregor flowerloseacellfitnessmarkerpredictscovid19prognosis
AT laurakmuller flowerloseacellfitnessmarkerpredictscovid19prognosis
AT emadarakha flowerloseacellfitnessmarkerpredictscovid19prognosis
AT antoniolopezbeltran flowerloseacellfitnessmarkerpredictscovid19prognosis
AT ronnydrapkin flowerloseacellfitnessmarkerpredictscovid19prognosis
AT maximilianackermann flowerloseacellfitnessmarkerpredictscovid19prognosis
AT paulbfisher flowerloseacellfitnessmarkerpredictscovid19prognosis
AT stevenrgrossman flowerloseacellfitnessmarkerpredictscovid19prognosis
AT andrewkgodwin flowerloseacellfitnessmarkerpredictscovid19prognosis
AT aruthakulasinghe flowerloseacellfitnessmarkerpredictscovid19prognosis
AT ivanmartinez flowerloseacellfitnessmarkerpredictscovid19prognosis
AT claybmarsh flowerloseacellfitnessmarkerpredictscovid19prognosis
AT benjamintang flowerloseacellfitnessmarkerpredictscovid19prognosis
AT maxswicha flowerloseacellfitnessmarkerpredictscovid19prognosis
AT kyoungjaewon flowerloseacellfitnessmarkerpredictscovid19prognosis
AT alexandartzankov flowerloseacellfitnessmarkerpredictscovid19prognosis
AT eduardomoreno flowerloseacellfitnessmarkerpredictscovid19prognosis
AT rajangogna flowerloseacellfitnessmarkerpredictscovid19prognosis
_version_ 1718442771960823808