Carcinoma initiation via RB tumor suppressor inactivation: a versatile approach to epithelial subtype-dependent cancer initiation in diverse tissues.

Carcinomas arise in a complex microenvironment consisting of multiple distinct epithelial lineages surrounded by a variety of stromal cell types. Understanding cancer etiologies requires evaluating the relationship among cell types during disease initiation and through progression. Genetically engin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yurong Song, Debra Gilbert, T Norene O'Sullivan, Chunyu Yang, Wenqi Pan, Alisan Fathalizadeh, Lucy Lu, Diana C Haines, Philip L Martin, Terry Van Dyke
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f8f8cf11eed944918839ab4509abf069
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Carcinomas arise in a complex microenvironment consisting of multiple distinct epithelial lineages surrounded by a variety of stromal cell types. Understanding cancer etiologies requires evaluating the relationship among cell types during disease initiation and through progression. Genetically engineered mouse (GEM) models facilitate the prospective examination of early oncogenic events, which is not possible in humans. Since most solid tumors harbor aberrations in the RB network, we developed an inducible GEM approach for the establishment and assessment of carcinoma initiation in a diverse range of epithelial tissues and subtypes upon inactivation of RB-mediated tumor suppression (RB-TS). The system allows independent assessment of epithelial subtypes that express either cytokeratins (K) 18 or 19. By Cre-dependent expression of a protein that dominantly inactivates RB and functionally redundant proteins p107 and p130, neoplasia could be initiated in either K18 or K19 expressing cells of numerous tissues. By design, because only a single pathway aberration was engineered, carcinomas developed stochastically only after long latency. Hence, this system, which allows for directed cell type-specific carcinoma initiation, facilitates further definition of events that can progress neoplasms to aggressive cancers via engineered, carcinogen-induced and/or spontaneous evolution.