Colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study
Sumit Basu,1,2 Biswajit Mukherjee,1 Samrat Roy Chowdhury,1 Paramita Paul,1 Rupak Choudhury,3 Ajeet Kumar,1 Laboni Mondal,1 Chowdhury Mobaswar Hossain,1 Ruma Maji11Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India; 2Department of Pharmacological and Pharmaceutical Sciences,...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f9023e33dfab43edbae8342778205903 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f9023e33dfab43edbae8342778205903 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f9023e33dfab43edbae83427782059032021-12-02T07:37:57ZColloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study1176-91141178-2013https://doaj.org/article/f9023e33dfab43edbae83427782059032012-12-01T00:00:00Zhttp://www.dovepress.com/colloidal-gold-loaded-biodegradable-polymer-based-stavudine-nanopartic-a11750https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Sumit Basu,1,2 Biswajit Mukherjee,1 Samrat Roy Chowdhury,1 Paramita Paul,1 Rupak Choudhury,3 Ajeet Kumar,1 Laboni Mondal,1 Chowdhury Mobaswar Hossain,1 Ruma Maji11Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India; 2Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA; 3Department of Biochemistry, Ballygunge Science College, Kolkata, IndiaObjective: We describe the development, evaluation, and comparison of colloidal gold-loaded, poly(d,l-lactic-co-glycolic acid)-based nanoparticles containing anti-acquired immunodeficiency syndrome drug stavudine and uptake of these nanoparticles by macrophages in vitro.Methods: We used the following methods in this study: drug-excipient interaction by Fourier transform infrared spectroscopy, morphology of nanoparticles by field-emission scanning electron microscopy, particle size by a particle size analyzer, and zeta potential and polydispersity index by a zetasizer. Drug loading and in vitro release were evaluated for formulations. The best formulation was incorporated with fluorescein isothiocyanate. Macrophage uptake of fluorescein isothiocyanate nanoparticles was studied in vitro.Results: Variations in process parameters, such as speed of homogenization and amount of excipients, affected drug loading and the polydispersity index. We found that the drug was released for a prolonged period (over 63 days) from the nanoparticles, and observed cellular uptake of stavudine nanoparticles by macrophages.Conclusion: Experimental nanoparticles represent an interesting carrier system for the transport of stavudine to macrophages, providing reduced required drug dose and improved drug delivery to macrophages over an extended period. The presence of colloidal gold in the particles decreased the drug content and resulted in comparatively faster drug release.Keywords: stavudine, poly(d,l-lactic-co-glycolic acid), nanoparticles, colloidal gold, uptake by macrophagesBasu SMukherjee BChowdhury SRPaul PChoudhury RKumar AMondal LHossain CMMaji RDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2012, Iss default, Pp 6049-6061 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Basu S Mukherjee B Chowdhury SR Paul P Choudhury R Kumar A Mondal L Hossain CM Maji R Colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study |
description |
Sumit Basu,1,2 Biswajit Mukherjee,1 Samrat Roy Chowdhury,1 Paramita Paul,1 Rupak Choudhury,3 Ajeet Kumar,1 Laboni Mondal,1 Chowdhury Mobaswar Hossain,1 Ruma Maji11Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India; 2Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA; 3Department of Biochemistry, Ballygunge Science College, Kolkata, IndiaObjective: We describe the development, evaluation, and comparison of colloidal gold-loaded, poly(d,l-lactic-co-glycolic acid)-based nanoparticles containing anti-acquired immunodeficiency syndrome drug stavudine and uptake of these nanoparticles by macrophages in vitro.Methods: We used the following methods in this study: drug-excipient interaction by Fourier transform infrared spectroscopy, morphology of nanoparticles by field-emission scanning electron microscopy, particle size by a particle size analyzer, and zeta potential and polydispersity index by a zetasizer. Drug loading and in vitro release were evaluated for formulations. The best formulation was incorporated with fluorescein isothiocyanate. Macrophage uptake of fluorescein isothiocyanate nanoparticles was studied in vitro.Results: Variations in process parameters, such as speed of homogenization and amount of excipients, affected drug loading and the polydispersity index. We found that the drug was released for a prolonged period (over 63 days) from the nanoparticles, and observed cellular uptake of stavudine nanoparticles by macrophages.Conclusion: Experimental nanoparticles represent an interesting carrier system for the transport of stavudine to macrophages, providing reduced required drug dose and improved drug delivery to macrophages over an extended period. The presence of colloidal gold in the particles decreased the drug content and resulted in comparatively faster drug release.Keywords: stavudine, poly(d,l-lactic-co-glycolic acid), nanoparticles, colloidal gold, uptake by macrophages |
format |
article |
author |
Basu S Mukherjee B Chowdhury SR Paul P Choudhury R Kumar A Mondal L Hossain CM Maji R |
author_facet |
Basu S Mukherjee B Chowdhury SR Paul P Choudhury R Kumar A Mondal L Hossain CM Maji R |
author_sort |
Basu S |
title |
Colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study |
title_short |
Colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study |
title_full |
Colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study |
title_fullStr |
Colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study |
title_full_unstemmed |
Colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study |
title_sort |
colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study |
publisher |
Dove Medical Press |
publishDate |
2012 |
url |
https://doaj.org/article/f9023e33dfab43edbae8342778205903 |
work_keys_str_mv |
AT basus colloidalgoldloadedbiodegradablepolymerbasedstavudinenanoparticleuptakebymacrophagesaninvitrostudy AT mukherjeeb colloidalgoldloadedbiodegradablepolymerbasedstavudinenanoparticleuptakebymacrophagesaninvitrostudy AT chowdhurysr colloidalgoldloadedbiodegradablepolymerbasedstavudinenanoparticleuptakebymacrophagesaninvitrostudy AT paulp colloidalgoldloadedbiodegradablepolymerbasedstavudinenanoparticleuptakebymacrophagesaninvitrostudy AT choudhuryr colloidalgoldloadedbiodegradablepolymerbasedstavudinenanoparticleuptakebymacrophagesaninvitrostudy AT kumara colloidalgoldloadedbiodegradablepolymerbasedstavudinenanoparticleuptakebymacrophagesaninvitrostudy AT mondall colloidalgoldloadedbiodegradablepolymerbasedstavudinenanoparticleuptakebymacrophagesaninvitrostudy AT hossaincm colloidalgoldloadedbiodegradablepolymerbasedstavudinenanoparticleuptakebymacrophagesaninvitrostudy AT majir colloidalgoldloadedbiodegradablepolymerbasedstavudinenanoparticleuptakebymacrophagesaninvitrostudy |
_version_ |
1718399316749451264 |