Prediction of 3D Cardiovascular hemodynamics before and after coronary artery bypass surgery via deep learning

Anzai et al. propose a deep learning approach to estimate the 3D hemodynamics of complex aorta-coronary artery geometry in the context of coronary artery bypass surgery. Their method reduces the calculation time 600-fold, while allowing high resolution and similar accuracy as traditional computation...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gaoyang Li, Haoran Wang, Mingzi Zhang, Simon Tupin, Aike Qiao, Youjun Liu, Makoto Ohta, Hitomi Anzai
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/f908395dcdb74fa3815c2468a4e3b0a5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Anzai et al. propose a deep learning approach to estimate the 3D hemodynamics of complex aorta-coronary artery geometry in the context of coronary artery bypass surgery. Their method reduces the calculation time 600-fold, while allowing high resolution and similar accuracy as traditional computational fluid dynamics (CFD) method.