Prediction of 3D Cardiovascular hemodynamics before and after coronary artery bypass surgery via deep learning

Anzai et al. propose a deep learning approach to estimate the 3D hemodynamics of complex aorta-coronary artery geometry in the context of coronary artery bypass surgery. Their method reduces the calculation time 600-fold, while allowing high resolution and similar accuracy as traditional computation...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Gaoyang Li, Haoran Wang, Mingzi Zhang, Simon Tupin, Aike Qiao, Youjun Liu, Makoto Ohta, Hitomi Anzai
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/f908395dcdb74fa3815c2468a4e3b0a5
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires