Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model
Machine learning (ML) as a powerful data-driven method is widely used for mineral prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China. In the proposed method, GA i...
Guardado en:
Autores principales: | Xishihui Du, Kefa Zhou, Yao Cui, Jinlin Wang, Shuguang Zhou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f9114c4c324045769e952e6f0bf9f753 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fault Diagnosis of Rolling Bearing Based on Probability box Theory and GA-SVM
por: Hong Tang, et al.
Publicado: (2020) -
Analysis of Support Vector Machine (SVM) Method and Simple Additive Weighting (SAW) Method in Making Decisions to Choose Specialization
por: Stevanny Tamaela, et al.
Publicado: (2020) -
Fault detection algorithm of industrial process based on DW-ICA-SVM
por: Jinyu GUO, et al.
Publicado: (2021) -
DrugHybrid_BS: Using Hybrid Feature Combined With Bagging-SVM to Predict Potentially Druggable Proteins
por: Yuxin Gong, et al.
Publicado: (2021) -
Alzheimer's patients detection using support vector machine (SVM) with quantitative analysis
por: Abhilash Sharma, et al.
Publicado: (2021)