What You Need to Know When Estimating Impact Functions with Panel Data for Demographic Research
The estimation of impact functions – that is the time-varying causal effect of a dichotomous treatment (e.g., marriage, divorce, parenthood) on outcomes (e.g., earnings, well-being, health) – has become a standard procedure in demographic applications. The basic methodology of estimating impact func...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Federal Institute for Population Research
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f911937b00e94efea27cdf402efb00f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The estimation of impact functions – that is the time-varying causal effect of a dichotomous treatment (e.g., marriage, divorce, parenthood) on outcomes (e.g., earnings, well-being, health) – has become a standard procedure in demographic applications. The basic methodology of estimating impact functions with panel data and fixed-effects regressions is now widely known. However, many researchers may not be fully aware of the methodological subtleties of the approach, which may lead to biased estimates of the impact function. In this paper, we highlight potential pitfalls and provide guidance on how to avoid these in practice. We demonstrate these issues with exemplary analyses, using data from the German Family Panel (pairfam) study and estimating the effect of motherhood on life satisfaction.
* This article belongs to a special issue on “Identification of causal mechanisms in demographic research: The contribution of panel data”. |
---|