Three-dimensional a-Si/a-Ge radial heterojunction near-infrared photovoltaic detector
Abstract In this work, three-dimensional (3D) radial heterojunction photodetectors (PD) were constructed over vertical crystalline Si nanowires (SiNWs), with stacked hydrogenated amorphous germanium (a-Ge:H)/a-Si:H thin film layer as absorbers. The hetero absorber layer is designed to benefit from t...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f9224dce6086479a844eea524917014c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract In this work, three-dimensional (3D) radial heterojunction photodetectors (PD) were constructed over vertical crystalline Si nanowires (SiNWs), with stacked hydrogenated amorphous germanium (a-Ge:H)/a-Si:H thin film layer as absorbers. The hetero absorber layer is designed to benefit from the type-II band alignment at the a-Ge/a-Si hetero-interface, which could help to enable an automated photo-carrier separation without exterior power supply. By inserting a carefully controlled a-Si passivation layer between the a-Ge:H layer and the p-type SiNWs, we demonstrate first a convenient fabrication of a new hetero a-Ge/a-Si structure operating as self-powered photodetectors (PD) in the near-infrared (NIR) range up to 900 nm, indicating a potential to serve as low cost, flexible and high performance radial junction sensing units for NIR imaging and PD applications. |
---|