Comparison of machine learning methods to predict udder health status based on somatic cell counts in dairy cows
Abstract Bovine mastitis is one of the most important economic and health issues in dairy farms. Data collection during routine recording procedures and access to large datasets have shed the light on the possibility to use trained machine learning algorithms to predict the udder health status of co...
Enregistré dans:
Auteurs principaux: | Tania Bobbo, Stefano Biffani, Cristian Taccioli, Mauro Penasa, Martino Cassandro |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f92da889623c4b0d91bf3a497f495f1f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A new standard model for milk yield in dairy cows based on udder physiology at the milking-session level
par: Patrick Gasqui, et autres
Publié: (2017) -
Effect of test year, parity number and days in milk on somatic cell count in dairy cows of Los Ríos region in Chile
par: Sebastino,Kiala B., et autres
Publié: (2020) -
Milking Machines on Chilean Dairy Farms and their Effects on Somatic Cell Count and Milk Yield: A Fied Study
par: Garcés A,R, et autres
Publié: (2006) -
Machine learning approaches for the prediction of lameness in dairy cows
par: S. Shahinfar, et autres
Publié: (2021) -
Structural equation modeling for investigating multi-trait genetic architecture of udder health in dairy cattle
par: Sara Pegolo, et autres
Publié: (2020)