Inferring multimodal latent topics from electronic health records
Electronic Health Records (EHR) are subject to noise, biases and missing data. Here, the authors present MixEHR, a multi-view Bayesian framework related to collaborative filtering and latent topic models for EHR data integration and modeling.
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f93fdf7cc75646b5afb46727b4bdaa9e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f93fdf7cc75646b5afb46727b4bdaa9e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f93fdf7cc75646b5afb46727b4bdaa9e2021-12-02T15:45:13ZInferring multimodal latent topics from electronic health records10.1038/s41467-020-16378-32041-1723https://doaj.org/article/f93fdf7cc75646b5afb46727b4bdaa9e2020-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16378-3https://doaj.org/toc/2041-1723Electronic Health Records (EHR) are subject to noise, biases and missing data. Here, the authors present MixEHR, a multi-view Bayesian framework related to collaborative filtering and latent topic models for EHR data integration and modeling.Yue LiPratheeksha NairXing Han LuZhi WenYuening WangAmir Ardalan Kalantari DehaghiYan MiaoWeiqi LiuTamas OrdogJoanna M. BiernackaEuijung RyuJanet E. OlsonMark A. FryeAihua LiuLiming GuoAriane MarelliYuri AhujaJose Davila-VelderrainManolis KellisNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-17 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Yue Li Pratheeksha Nair Xing Han Lu Zhi Wen Yuening Wang Amir Ardalan Kalantari Dehaghi Yan Miao Weiqi Liu Tamas Ordog Joanna M. Biernacka Euijung Ryu Janet E. Olson Mark A. Frye Aihua Liu Liming Guo Ariane Marelli Yuri Ahuja Jose Davila-Velderrain Manolis Kellis Inferring multimodal latent topics from electronic health records |
description |
Electronic Health Records (EHR) are subject to noise, biases and missing data. Here, the authors present MixEHR, a multi-view Bayesian framework related to collaborative filtering and latent topic models for EHR data integration and modeling. |
format |
article |
author |
Yue Li Pratheeksha Nair Xing Han Lu Zhi Wen Yuening Wang Amir Ardalan Kalantari Dehaghi Yan Miao Weiqi Liu Tamas Ordog Joanna M. Biernacka Euijung Ryu Janet E. Olson Mark A. Frye Aihua Liu Liming Guo Ariane Marelli Yuri Ahuja Jose Davila-Velderrain Manolis Kellis |
author_facet |
Yue Li Pratheeksha Nair Xing Han Lu Zhi Wen Yuening Wang Amir Ardalan Kalantari Dehaghi Yan Miao Weiqi Liu Tamas Ordog Joanna M. Biernacka Euijung Ryu Janet E. Olson Mark A. Frye Aihua Liu Liming Guo Ariane Marelli Yuri Ahuja Jose Davila-Velderrain Manolis Kellis |
author_sort |
Yue Li |
title |
Inferring multimodal latent topics from electronic health records |
title_short |
Inferring multimodal latent topics from electronic health records |
title_full |
Inferring multimodal latent topics from electronic health records |
title_fullStr |
Inferring multimodal latent topics from electronic health records |
title_full_unstemmed |
Inferring multimodal latent topics from electronic health records |
title_sort |
inferring multimodal latent topics from electronic health records |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/f93fdf7cc75646b5afb46727b4bdaa9e |
work_keys_str_mv |
AT yueli inferringmultimodallatenttopicsfromelectronichealthrecords AT pratheekshanair inferringmultimodallatenttopicsfromelectronichealthrecords AT xinghanlu inferringmultimodallatenttopicsfromelectronichealthrecords AT zhiwen inferringmultimodallatenttopicsfromelectronichealthrecords AT yueningwang inferringmultimodallatenttopicsfromelectronichealthrecords AT amirardalankalantaridehaghi inferringmultimodallatenttopicsfromelectronichealthrecords AT yanmiao inferringmultimodallatenttopicsfromelectronichealthrecords AT weiqiliu inferringmultimodallatenttopicsfromelectronichealthrecords AT tamasordog inferringmultimodallatenttopicsfromelectronichealthrecords AT joannambiernacka inferringmultimodallatenttopicsfromelectronichealthrecords AT euijungryu inferringmultimodallatenttopicsfromelectronichealthrecords AT janeteolson inferringmultimodallatenttopicsfromelectronichealthrecords AT markafrye inferringmultimodallatenttopicsfromelectronichealthrecords AT aihualiu inferringmultimodallatenttopicsfromelectronichealthrecords AT limingguo inferringmultimodallatenttopicsfromelectronichealthrecords AT arianemarelli inferringmultimodallatenttopicsfromelectronichealthrecords AT yuriahuja inferringmultimodallatenttopicsfromelectronichealthrecords AT josedavilavelderrain inferringmultimodallatenttopicsfromelectronichealthrecords AT manoliskellis inferringmultimodallatenttopicsfromelectronichealthrecords |
_version_ |
1718385787860418560 |