Inferring multimodal latent topics from electronic health records

Electronic Health Records (EHR) are subject to noise, biases and missing data. Here, the authors present MixEHR, a multi-view Bayesian framework related to collaborative filtering and latent topic models for EHR data integration and modeling.

Guardado en:
Detalles Bibliográficos
Autores principales: Yue Li, Pratheeksha Nair, Xing Han Lu, Zhi Wen, Yuening Wang, Amir Ardalan Kalantari Dehaghi, Yan Miao, Weiqi Liu, Tamas Ordog, Joanna M. Biernacka, Euijung Ryu, Janet E. Olson, Mark A. Frye, Aihua Liu, Liming Guo, Ariane Marelli, Yuri Ahuja, Jose Davila-Velderrain, Manolis Kellis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/f93fdf7cc75646b5afb46727b4bdaa9e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f93fdf7cc75646b5afb46727b4bdaa9e
record_format dspace
spelling oai:doaj.org-article:f93fdf7cc75646b5afb46727b4bdaa9e2021-12-02T15:45:13ZInferring multimodal latent topics from electronic health records10.1038/s41467-020-16378-32041-1723https://doaj.org/article/f93fdf7cc75646b5afb46727b4bdaa9e2020-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16378-3https://doaj.org/toc/2041-1723Electronic Health Records (EHR) are subject to noise, biases and missing data. Here, the authors present MixEHR, a multi-view Bayesian framework related to collaborative filtering and latent topic models for EHR data integration and modeling.Yue LiPratheeksha NairXing Han LuZhi WenYuening WangAmir Ardalan Kalantari DehaghiYan MiaoWeiqi LiuTamas OrdogJoanna M. BiernackaEuijung RyuJanet E. OlsonMark A. FryeAihua LiuLiming GuoAriane MarelliYuri AhujaJose Davila-VelderrainManolis KellisNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-17 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yue Li
Pratheeksha Nair
Xing Han Lu
Zhi Wen
Yuening Wang
Amir Ardalan Kalantari Dehaghi
Yan Miao
Weiqi Liu
Tamas Ordog
Joanna M. Biernacka
Euijung Ryu
Janet E. Olson
Mark A. Frye
Aihua Liu
Liming Guo
Ariane Marelli
Yuri Ahuja
Jose Davila-Velderrain
Manolis Kellis
Inferring multimodal latent topics from electronic health records
description Electronic Health Records (EHR) are subject to noise, biases and missing data. Here, the authors present MixEHR, a multi-view Bayesian framework related to collaborative filtering and latent topic models for EHR data integration and modeling.
format article
author Yue Li
Pratheeksha Nair
Xing Han Lu
Zhi Wen
Yuening Wang
Amir Ardalan Kalantari Dehaghi
Yan Miao
Weiqi Liu
Tamas Ordog
Joanna M. Biernacka
Euijung Ryu
Janet E. Olson
Mark A. Frye
Aihua Liu
Liming Guo
Ariane Marelli
Yuri Ahuja
Jose Davila-Velderrain
Manolis Kellis
author_facet Yue Li
Pratheeksha Nair
Xing Han Lu
Zhi Wen
Yuening Wang
Amir Ardalan Kalantari Dehaghi
Yan Miao
Weiqi Liu
Tamas Ordog
Joanna M. Biernacka
Euijung Ryu
Janet E. Olson
Mark A. Frye
Aihua Liu
Liming Guo
Ariane Marelli
Yuri Ahuja
Jose Davila-Velderrain
Manolis Kellis
author_sort Yue Li
title Inferring multimodal latent topics from electronic health records
title_short Inferring multimodal latent topics from electronic health records
title_full Inferring multimodal latent topics from electronic health records
title_fullStr Inferring multimodal latent topics from electronic health records
title_full_unstemmed Inferring multimodal latent topics from electronic health records
title_sort inferring multimodal latent topics from electronic health records
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/f93fdf7cc75646b5afb46727b4bdaa9e
work_keys_str_mv AT yueli inferringmultimodallatenttopicsfromelectronichealthrecords
AT pratheekshanair inferringmultimodallatenttopicsfromelectronichealthrecords
AT xinghanlu inferringmultimodallatenttopicsfromelectronichealthrecords
AT zhiwen inferringmultimodallatenttopicsfromelectronichealthrecords
AT yueningwang inferringmultimodallatenttopicsfromelectronichealthrecords
AT amirardalankalantaridehaghi inferringmultimodallatenttopicsfromelectronichealthrecords
AT yanmiao inferringmultimodallatenttopicsfromelectronichealthrecords
AT weiqiliu inferringmultimodallatenttopicsfromelectronichealthrecords
AT tamasordog inferringmultimodallatenttopicsfromelectronichealthrecords
AT joannambiernacka inferringmultimodallatenttopicsfromelectronichealthrecords
AT euijungryu inferringmultimodallatenttopicsfromelectronichealthrecords
AT janeteolson inferringmultimodallatenttopicsfromelectronichealthrecords
AT markafrye inferringmultimodallatenttopicsfromelectronichealthrecords
AT aihualiu inferringmultimodallatenttopicsfromelectronichealthrecords
AT limingguo inferringmultimodallatenttopicsfromelectronichealthrecords
AT arianemarelli inferringmultimodallatenttopicsfromelectronichealthrecords
AT yuriahuja inferringmultimodallatenttopicsfromelectronichealthrecords
AT josedavilavelderrain inferringmultimodallatenttopicsfromelectronichealthrecords
AT manoliskellis inferringmultimodallatenttopicsfromelectronichealthrecords
_version_ 1718385787860418560