The geometric nature of weights in real complex networks

Complex networks have been conjectured to be hidden in metric spaces, which offer geometric interpretation of networks’ topologies. Here the authors extend this concept to weighted networks, providing empirical evidence on the metric natures of weights, which are shown to be reproducible by a gravit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Antoine Allard, M. Ángeles Serrano, Guillermo García-Pérez, Marián Boguñá
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/f93ffa7bd72e40bc83927c67389a6048
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f93ffa7bd72e40bc83927c67389a6048
record_format dspace
spelling oai:doaj.org-article:f93ffa7bd72e40bc83927c67389a60482021-12-02T14:42:37ZThe geometric nature of weights in real complex networks10.1038/ncomms141032041-1723https://doaj.org/article/f93ffa7bd72e40bc83927c67389a60482017-01-01T00:00:00Zhttps://doi.org/10.1038/ncomms14103https://doaj.org/toc/2041-1723Complex networks have been conjectured to be hidden in metric spaces, which offer geometric interpretation of networks’ topologies. Here the authors extend this concept to weighted networks, providing empirical evidence on the metric natures of weights, which are shown to be reproducible by a gravity model.Antoine AllardM. Ángeles SerranoGuillermo García-PérezMarián BoguñáNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-8 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Antoine Allard
M. Ángeles Serrano
Guillermo García-Pérez
Marián Boguñá
The geometric nature of weights in real complex networks
description Complex networks have been conjectured to be hidden in metric spaces, which offer geometric interpretation of networks’ topologies. Here the authors extend this concept to weighted networks, providing empirical evidence on the metric natures of weights, which are shown to be reproducible by a gravity model.
format article
author Antoine Allard
M. Ángeles Serrano
Guillermo García-Pérez
Marián Boguñá
author_facet Antoine Allard
M. Ángeles Serrano
Guillermo García-Pérez
Marián Boguñá
author_sort Antoine Allard
title The geometric nature of weights in real complex networks
title_short The geometric nature of weights in real complex networks
title_full The geometric nature of weights in real complex networks
title_fullStr The geometric nature of weights in real complex networks
title_full_unstemmed The geometric nature of weights in real complex networks
title_sort geometric nature of weights in real complex networks
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/f93ffa7bd72e40bc83927c67389a6048
work_keys_str_mv AT antoineallard thegeometricnatureofweightsinrealcomplexnetworks
AT mangelesserrano thegeometricnatureofweightsinrealcomplexnetworks
AT guillermogarciaperez thegeometricnatureofweightsinrealcomplexnetworks
AT marianboguna thegeometricnatureofweightsinrealcomplexnetworks
AT antoineallard geometricnatureofweightsinrealcomplexnetworks
AT mangelesserrano geometricnatureofweightsinrealcomplexnetworks
AT guillermogarciaperez geometricnatureofweightsinrealcomplexnetworks
AT marianboguna geometricnatureofweightsinrealcomplexnetworks
_version_ 1718389668002660352