Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut.
Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to l...
Guardado en:
Autores principales: | Anca Ciurte, Xavier Bresson, Olivier Cuisenaire, Nawal Houhou, Sergiu Nedevschi, Jean-Philippe Thiran, Meritxell Bach Cuadra |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f945a5e1db33426b855324143ca4c36d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The representation of colored objects in macaque color patches
por: Le Chang, et al.
Publicado: (2017) -
Semi-Supervised Training for Positioning of Welding Seams
por: Wenbin Zhang, et al.
Publicado: (2021) -
Full body virtual try‐on with semi‐self‐supervised learning
por: Hyug‐Jae Lee, et al.
Publicado: (2021) -
Malware detection based on semi-supervised learning with malware visualization
por: Tan Gao, et al.
Publicado: (2021) -
Quantum semi-supervised generative adversarial network for enhanced data classification
por: Kouhei Nakaji, et al.
Publicado: (2021)