Verification of a resetting protocol for an uncontrolled superconducting qubit

Abstract Quantum resetting protocols allow a quantum system to be sent to a state in the past by making it interact with quantum probes when neither the free evolution of the system nor the interaction is controlled. We experimentally verify the simplest non-trivial case of a quantum resetting proto...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ming Gong, Feihu Xu, Zheng-Da Li, Zizhu Wang, Yu-Zhe Zhang, Yulin Wu, Shaowei Li, Youwei Zhao, Shiyu Wang, Chen Zha, Hui Deng, Zhiguang Yan, Hao Rong, Futian Liang, Jin Lin, Yu Xu, Cheng Guo, Lihua Sun, Anthony D. Castellano, Cheng-Zhi Peng, Yu-Ao Chen, Xiaobo Zhu, Jian-Wei Pan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Acceso en línea:https://doaj.org/article/f9524351835f42eb9e508815e9074d96
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f9524351835f42eb9e508815e9074d96
record_format dspace
spelling oai:doaj.org-article:f9524351835f42eb9e508815e9074d962021-12-02T15:10:33ZVerification of a resetting protocol for an uncontrolled superconducting qubit10.1038/s41534-020-00329-32056-6387https://doaj.org/article/f9524351835f42eb9e508815e9074d962020-12-01T00:00:00Zhttps://doi.org/10.1038/s41534-020-00329-3https://doaj.org/toc/2056-6387Abstract Quantum resetting protocols allow a quantum system to be sent to a state in the past by making it interact with quantum probes when neither the free evolution of the system nor the interaction is controlled. We experimentally verify the simplest non-trivial case of a quantum resetting protocol, known as the $${{\mathcal{W}}}_{4}$$ W 4 protocol, with five superconducting qubits, testing it with different types of free evolutions and target–probe interactions. After projection, we obtained a reset state fidelity as high as 0.951, and the process fidelity was found to be 0.792. We also implemented 100 randomly chosen interactions and demonstrated an average success probability of 0.323 for $$\left|1\right\rangle$$ 1 and 0.292 for $$\left|-\right\rangle$$ − , and experimentally confirmed the nonzero probability of success for unknown interactions; the numerical simulated values are about 0.3. Our experiment shows that the simplest quantum resetting protocol can be implemented with current technologies, making such protocols a valuable tool in the eternal fight against unwanted evolution in quantum systems.Ming GongFeihu XuZheng-Da LiZizhu WangYu-Zhe ZhangYulin WuShaowei LiYouwei ZhaoShiyu WangChen ZhaHui DengZhiguang YanHao RongFutian LiangJin LinYu XuCheng GuoLihua SunAnthony D. CastellanoCheng-Zhi PengYu-Ao ChenXiaobo ZhuJian-Wei PanNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 6, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
spellingShingle Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
Ming Gong
Feihu Xu
Zheng-Da Li
Zizhu Wang
Yu-Zhe Zhang
Yulin Wu
Shaowei Li
Youwei Zhao
Shiyu Wang
Chen Zha
Hui Deng
Zhiguang Yan
Hao Rong
Futian Liang
Jin Lin
Yu Xu
Cheng Guo
Lihua Sun
Anthony D. Castellano
Cheng-Zhi Peng
Yu-Ao Chen
Xiaobo Zhu
Jian-Wei Pan
Verification of a resetting protocol for an uncontrolled superconducting qubit
description Abstract Quantum resetting protocols allow a quantum system to be sent to a state in the past by making it interact with quantum probes when neither the free evolution of the system nor the interaction is controlled. We experimentally verify the simplest non-trivial case of a quantum resetting protocol, known as the $${{\mathcal{W}}}_{4}$$ W 4 protocol, with five superconducting qubits, testing it with different types of free evolutions and target–probe interactions. After projection, we obtained a reset state fidelity as high as 0.951, and the process fidelity was found to be 0.792. We also implemented 100 randomly chosen interactions and demonstrated an average success probability of 0.323 for $$\left|1\right\rangle$$ 1 and 0.292 for $$\left|-\right\rangle$$ − , and experimentally confirmed the nonzero probability of success for unknown interactions; the numerical simulated values are about 0.3. Our experiment shows that the simplest quantum resetting protocol can be implemented with current technologies, making such protocols a valuable tool in the eternal fight against unwanted evolution in quantum systems.
format article
author Ming Gong
Feihu Xu
Zheng-Da Li
Zizhu Wang
Yu-Zhe Zhang
Yulin Wu
Shaowei Li
Youwei Zhao
Shiyu Wang
Chen Zha
Hui Deng
Zhiguang Yan
Hao Rong
Futian Liang
Jin Lin
Yu Xu
Cheng Guo
Lihua Sun
Anthony D. Castellano
Cheng-Zhi Peng
Yu-Ao Chen
Xiaobo Zhu
Jian-Wei Pan
author_facet Ming Gong
Feihu Xu
Zheng-Da Li
Zizhu Wang
Yu-Zhe Zhang
Yulin Wu
Shaowei Li
Youwei Zhao
Shiyu Wang
Chen Zha
Hui Deng
Zhiguang Yan
Hao Rong
Futian Liang
Jin Lin
Yu Xu
Cheng Guo
Lihua Sun
Anthony D. Castellano
Cheng-Zhi Peng
Yu-Ao Chen
Xiaobo Zhu
Jian-Wei Pan
author_sort Ming Gong
title Verification of a resetting protocol for an uncontrolled superconducting qubit
title_short Verification of a resetting protocol for an uncontrolled superconducting qubit
title_full Verification of a resetting protocol for an uncontrolled superconducting qubit
title_fullStr Verification of a resetting protocol for an uncontrolled superconducting qubit
title_full_unstemmed Verification of a resetting protocol for an uncontrolled superconducting qubit
title_sort verification of a resetting protocol for an uncontrolled superconducting qubit
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/f9524351835f42eb9e508815e9074d96
work_keys_str_mv AT minggong verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT feihuxu verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT zhengdali verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT zizhuwang verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT yuzhezhang verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT yulinwu verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT shaoweili verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT youweizhao verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT shiyuwang verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT chenzha verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT huideng verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT zhiguangyan verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT haorong verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT futianliang verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT jinlin verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT yuxu verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT chengguo verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT lihuasun verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT anthonydcastellano verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT chengzhipeng verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT yuaochen verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT xiaobozhu verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
AT jianweipan verificationofaresettingprotocolforanuncontrolledsuperconductingqubit
_version_ 1718387731328925696