Surface runoff prediction and comparison using IHACRES and GR4J lumped models in the Mono catchment, West Africa

<p>This study aims to assess simulated surface runoff before and after dam construction in the Mono catchment (West Africa) using two lumped models: GR4J (Rural Engineering with 4 Daily Parameters) and IHACRES (Identification of unit Hydrographs and Component flows from Rainfall, Evapotranspir...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: H. D. Koubodana, K. Atchonouglo, J. G. Adounkpe, E. Amoussou, D. J. Kodja, D. Koungbanane, K. Y. Afoudji, Y. Lombo, K. E. Kpemoua
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/f9581699c0184c9db746e3f78e9c0148
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f9581699c0184c9db746e3f78e9c0148
record_format dspace
spelling oai:doaj.org-article:f9581699c0184c9db746e3f78e9c01482021-11-16T06:53:13ZSurface runoff prediction and comparison using IHACRES and GR4J lumped models in the Mono catchment, West Africa10.5194/piahs-384-63-20212199-89812199-899Xhttps://doaj.org/article/f9581699c0184c9db746e3f78e9c01482021-11-01T00:00:00Zhttps://piahs.copernicus.org/articles/384/63/2021/piahs-384-63-2021.pdfhttps://doaj.org/toc/2199-8981https://doaj.org/toc/2199-899X<p>This study aims to assess simulated surface runoff before and after dam construction in the Mono catchment (West Africa) using two lumped models: GR4J (Rural Engineering with 4 Daily Parameters) and IHACRES (Identification of unit Hydrographs and Component flows from Rainfall, Evapotranspiration and Stream data) over two different periods (1964–1986 and 1988–2010). Daily rainfall, mean temperature, evapotranspiration and discharge in situ data were collected for the period 1964–2010. After the model's initialization, calibration and validation; performances analysis have been carried out using multi-objectives functions developed in R software (version 3.5.3). The results indicate that statistical metrics such as the coefficient of determination (<span class="inline-formula"><i>R</i><sup>2</sup></span>), the Kling–Gupta Efficiency (KGE), the Nash–Sutcliffe coefficient (NSE) and the Percent of Bias (PBIAS) provide satisfactory insights over the first period of simulation (1964–1986) and low performances over the second period of simulation (1988–2010). In particular, IHACRES model underestimates extreme high runoff of Mono catchment between 1964 and 1986. Conversely, GR4J model overestimates extreme high runoff and has been found to be better for runoff prediction of the river only between 1964 and 1986. Moreover, the study deduced that the robustness of runoff simulation between 1964 and 1986 is better than between 1988 and 2010. Therefore, the weakness of simulated runoff between 1988 and 2010 was certainly due to dam management in the catchment. The study suggests that land cover changes impacts, soil proprieties and climate may also affect surface runoff in the catchment.</p>H. D. KoubodanaH. D. KoubodanaH. D. KoubodanaK. AtchonougloJ. G. AdounkpeE. AmoussouE. AmoussouD. J. KodjaD. KoungbananeK. Y. AfoudjiY. LomboK. E. KpemouaCopernicus PublicationsarticleEnvironmental sciencesGE1-350GeologyQE1-996.5ENProceedings of the International Association of Hydrological Sciences, Vol 384, Pp 63-68 (2021)
institution DOAJ
collection DOAJ
language EN
topic Environmental sciences
GE1-350
Geology
QE1-996.5
spellingShingle Environmental sciences
GE1-350
Geology
QE1-996.5
H. D. Koubodana
H. D. Koubodana
H. D. Koubodana
K. Atchonouglo
J. G. Adounkpe
E. Amoussou
E. Amoussou
D. J. Kodja
D. Koungbanane
K. Y. Afoudji
Y. Lombo
K. E. Kpemoua
Surface runoff prediction and comparison using IHACRES and GR4J lumped models in the Mono catchment, West Africa
description <p>This study aims to assess simulated surface runoff before and after dam construction in the Mono catchment (West Africa) using two lumped models: GR4J (Rural Engineering with 4 Daily Parameters) and IHACRES (Identification of unit Hydrographs and Component flows from Rainfall, Evapotranspiration and Stream data) over two different periods (1964–1986 and 1988–2010). Daily rainfall, mean temperature, evapotranspiration and discharge in situ data were collected for the period 1964–2010. After the model's initialization, calibration and validation; performances analysis have been carried out using multi-objectives functions developed in R software (version 3.5.3). The results indicate that statistical metrics such as the coefficient of determination (<span class="inline-formula"><i>R</i><sup>2</sup></span>), the Kling–Gupta Efficiency (KGE), the Nash–Sutcliffe coefficient (NSE) and the Percent of Bias (PBIAS) provide satisfactory insights over the first period of simulation (1964–1986) and low performances over the second period of simulation (1988–2010). In particular, IHACRES model underestimates extreme high runoff of Mono catchment between 1964 and 1986. Conversely, GR4J model overestimates extreme high runoff and has been found to be better for runoff prediction of the river only between 1964 and 1986. Moreover, the study deduced that the robustness of runoff simulation between 1964 and 1986 is better than between 1988 and 2010. Therefore, the weakness of simulated runoff between 1988 and 2010 was certainly due to dam management in the catchment. The study suggests that land cover changes impacts, soil proprieties and climate may also affect surface runoff in the catchment.</p>
format article
author H. D. Koubodana
H. D. Koubodana
H. D. Koubodana
K. Atchonouglo
J. G. Adounkpe
E. Amoussou
E. Amoussou
D. J. Kodja
D. Koungbanane
K. Y. Afoudji
Y. Lombo
K. E. Kpemoua
author_facet H. D. Koubodana
H. D. Koubodana
H. D. Koubodana
K. Atchonouglo
J. G. Adounkpe
E. Amoussou
E. Amoussou
D. J. Kodja
D. Koungbanane
K. Y. Afoudji
Y. Lombo
K. E. Kpemoua
author_sort H. D. Koubodana
title Surface runoff prediction and comparison using IHACRES and GR4J lumped models in the Mono catchment, West Africa
title_short Surface runoff prediction and comparison using IHACRES and GR4J lumped models in the Mono catchment, West Africa
title_full Surface runoff prediction and comparison using IHACRES and GR4J lumped models in the Mono catchment, West Africa
title_fullStr Surface runoff prediction and comparison using IHACRES and GR4J lumped models in the Mono catchment, West Africa
title_full_unstemmed Surface runoff prediction and comparison using IHACRES and GR4J lumped models in the Mono catchment, West Africa
title_sort surface runoff prediction and comparison using ihacres and gr4j lumped models in the mono catchment, west africa
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/f9581699c0184c9db746e3f78e9c0148
work_keys_str_mv AT hdkoubodana surfacerunoffpredictionandcomparisonusingihacresandgr4jlumpedmodelsinthemonocatchmentwestafrica
AT hdkoubodana surfacerunoffpredictionandcomparisonusingihacresandgr4jlumpedmodelsinthemonocatchmentwestafrica
AT hdkoubodana surfacerunoffpredictionandcomparisonusingihacresandgr4jlumpedmodelsinthemonocatchmentwestafrica
AT katchonouglo surfacerunoffpredictionandcomparisonusingihacresandgr4jlumpedmodelsinthemonocatchmentwestafrica
AT jgadounkpe surfacerunoffpredictionandcomparisonusingihacresandgr4jlumpedmodelsinthemonocatchmentwestafrica
AT eamoussou surfacerunoffpredictionandcomparisonusingihacresandgr4jlumpedmodelsinthemonocatchmentwestafrica
AT eamoussou surfacerunoffpredictionandcomparisonusingihacresandgr4jlumpedmodelsinthemonocatchmentwestafrica
AT djkodja surfacerunoffpredictionandcomparisonusingihacresandgr4jlumpedmodelsinthemonocatchmentwestafrica
AT dkoungbanane surfacerunoffpredictionandcomparisonusingihacresandgr4jlumpedmodelsinthemonocatchmentwestafrica
AT kyafoudji surfacerunoffpredictionandcomparisonusingihacresandgr4jlumpedmodelsinthemonocatchmentwestafrica
AT ylombo surfacerunoffpredictionandcomparisonusingihacresandgr4jlumpedmodelsinthemonocatchmentwestafrica
AT kekpemoua surfacerunoffpredictionandcomparisonusingihacresandgr4jlumpedmodelsinthemonocatchmentwestafrica
_version_ 1718426702528380928