A robust model of Stimulus-Specific Adaptation validated on neuromorphic hardware
Abstract Stimulus-Specific Adaptation (SSA) to repetitive stimulation is a phenomenon that has been observed across many different species and in several brain sensory areas. It has been proposed as a computational mechanism, responsible for separating behaviorally relevant information from the cont...
Guardado en:
Autores principales: | Natacha Vanattou-Saïfoudine, Chao Han, Renate Krause, Eleni Vasilaki, Wolfger von der Behrens, Giacomo Indiveri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f97c6154e5434aa3a6f60c171b48b097 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust neuromorphic coupled oscillators for adaptive pacemakers
por: Renate Krause, et al.
Publicado: (2021) -
Supervised training of spiking neural networks for robust deployment on mixed-signal neuromorphic processors
por: Julian Büchel, et al.
Publicado: (2021) -
Challenges hindering memristive neuromorphic hardware from going mainstream
por: Gina C. Adam, et al.
Publicado: (2018) -
Alternative negative weight for simpler hardware implementation of synapse device based neuromorphic system
por: Geonhui Han, et al.
Publicado: (2021) -
A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware
por: Chenglong Zou, et al.
Publicado: (2021)