The Economic Loss Prediction of Flooding Based on Machine Learning and the Input-Output Model
As climate change becomes increasingly widespread, rapid, and intense, the frequency of heavy rainfall and floods continues to increase. This article establishes a prediction system using feature sets with multiple data dimensions, including meteorological data and socio-economic data. Based on data...
Guardado en:
Autores principales: | Anqi Chen, Shibing You, Jiahao Li, Huan Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f995305cbca448dab07952d76a206794 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The input-output model
por: Vuskovic, Pedro
Publicado: (2014) -
Enhanced input, individual output, and collaborative output: Effects on the acquisition of the English subjunctive mood
por: Jabbarpoor,Shadab, et al.
Publicado: (2013) -
Flow dependence of wintertime subseasonal prediction skill over Europe
por: C. Ardilouze, et al.
Publicado: (2021) -
El modelo de insumo-producto = the input-output model
por: Vuskovic, Pedro
Publicado: (2014) -
Improvement of Heavy Rainfall Simulated with SST Adjustment Associated with Mesoscale Convective Complexes Related to Severe Flash Flood in Luwu, Sulawesi, Indonesia
por: Erma Yulihastin, et al.
Publicado: (2021)