AptaNet as a deep learning approach for aptamer–protein interaction prediction
Abstract Aptamers are short oligonucleotides (DNA/RNA) or peptide molecules that can selectively bind to their specific targets with high specificity and affinity. As a powerful new class of amino acid ligands, aptamers have high potentials in biosensing, therapeutic, and diagnostic fields. Here, we...
Guardado en:
Autores principales: | Neda Emami, Reza Ferdousi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f9b26603b44f4b3da984cc4e94310d8c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach.
por: Gwangho Lee, et al.
Publicado: (2021) - APTA Magazine
-
BreakNet: detecting deletions using long reads and a deep learning approach
por: Junwei Luo, et al.
Publicado: (2021) -
Prediction of aptamer-target interacting pairs with pseudo-amino acid composition.
por: Bi-Qing Li, et al.
Publicado: (2014) -
StressNet - Deep learning to predict stress with fracture propagation in brittle materials
por: Yinan Wang, et al.
Publicado: (2021)