Evaluation of seismic parameters of steel moment resisting frames based on “FEMA P-695” under near-field rotated ground motion
Behavior factor (R) is one of the seismic design parameters that considers nonlinear performance of structures during an earthquake. In most of the seismic design codes, behavior factor has been used for considering nonlinear performance of structures in linear analyses. The purpose of this study is...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | FA |
Publicado: |
Iranian Society of Structrual Engineering (ISSE)
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f9b716a87c8d458aafc7fbd96b20d260 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f9b716a87c8d458aafc7fbd96b20d260 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f9b716a87c8d458aafc7fbd96b20d2602021-11-08T15:45:57ZEvaluation of seismic parameters of steel moment resisting frames based on “FEMA P-695” under near-field rotated ground motion2476-39772538-2616https://doaj.org/article/f9b716a87c8d458aafc7fbd96b20d2602016-09-01T00:00:00Zhttps://www.jsce.ir/article_38574_c56aef8a0c7fdc09bbc6bb1621559b4e.pdfhttps://doaj.org/toc/2476-3977https://doaj.org/toc/2538-2616Behavior factor (R) is one of the seismic design parameters that considers nonlinear performance of structures during an earthquake. In most of the seismic design codes, behavior factor has been used for considering nonlinear performance of structures in linear analyses. The purpose of this study is an evaluation of seismic parameters of structures under far-field and near-field ground motions (rotated to fault strike‑normal and fault strike‑parallel) based on the method presented in FEMA P‑695 and comparing the results with those in the code. Thus, five intermediate steel moment resisting frames with 4, 7, 10, 15, and 20 stories were considered. The capacity curve of each model were obtained by Displacement- based Adaptive Pushover Analysis. All of the nonlinear analyses were conducted by OpenSees. The results state that the behavior factor due to the ground motions used in this study decreases as the structure’s height increases. Average of difference of behavior factor in far-field ground motions and average of behavior factor in near-field ground motions is 6.5 percent and the reason is that the behavior factor in far-field ground motions is greater. Also, the behavior factor in fault strike-parallel near-field ground motions (SP) is greater than fault strike-normal near-field (SN) and the average of this difference for different structures is almost 4 percent.M. GeramiA. H. MashayekhiN. SiahpoloIranian Society of Structrual Engineering (ISSE)articlebehavior factor (r factor)displacement modifier factordisplacement-based adaptive pushover analysisfema p-695overstrength factorBridge engineeringTG1-470Building constructionTH1-9745FAJournal of Structural and Construction Engineering, Vol 3, Iss 2, Pp 59-72 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
FA |
topic |
behavior factor (r factor) displacement modifier factor displacement-based adaptive pushover analysis fema p-695 overstrength factor Bridge engineering TG1-470 Building construction TH1-9745 |
spellingShingle |
behavior factor (r factor) displacement modifier factor displacement-based adaptive pushover analysis fema p-695 overstrength factor Bridge engineering TG1-470 Building construction TH1-9745 M. Gerami A. H. Mashayekhi N. Siahpolo Evaluation of seismic parameters of steel moment resisting frames based on “FEMA P-695” under near-field rotated ground motion |
description |
Behavior factor (R) is one of the seismic design parameters that considers nonlinear performance of structures during an earthquake. In most of the seismic design codes, behavior factor has been used for considering nonlinear performance of structures in linear analyses. The purpose of this study is an evaluation of seismic parameters of structures under far-field and near-field ground motions (rotated to fault strike‑normal and fault strike‑parallel) based on the method presented in FEMA P‑695 and comparing the results with those in the code. Thus, five intermediate steel moment resisting frames with 4, 7, 10, 15, and 20 stories were considered. The capacity curve of each model were obtained by Displacement- based Adaptive Pushover Analysis. All of the nonlinear analyses were conducted by OpenSees. The results state that the behavior factor due to the ground motions used in this study decreases as the structure’s height increases. Average of difference of behavior factor in far-field ground motions and average of behavior factor in near-field ground motions is 6.5 percent and the reason is that the behavior factor in far-field ground motions is greater. Also, the behavior factor in fault strike-parallel near-field ground motions (SP) is greater than fault strike-normal near-field (SN) and the average of this difference for different structures is almost 4 percent. |
format |
article |
author |
M. Gerami A. H. Mashayekhi N. Siahpolo |
author_facet |
M. Gerami A. H. Mashayekhi N. Siahpolo |
author_sort |
M. Gerami |
title |
Evaluation of seismic parameters of steel moment resisting frames based on “FEMA P-695” under near-field rotated ground motion |
title_short |
Evaluation of seismic parameters of steel moment resisting frames based on “FEMA P-695” under near-field rotated ground motion |
title_full |
Evaluation of seismic parameters of steel moment resisting frames based on “FEMA P-695” under near-field rotated ground motion |
title_fullStr |
Evaluation of seismic parameters of steel moment resisting frames based on “FEMA P-695” under near-field rotated ground motion |
title_full_unstemmed |
Evaluation of seismic parameters of steel moment resisting frames based on “FEMA P-695” under near-field rotated ground motion |
title_sort |
evaluation of seismic parameters of steel moment resisting frames based on “fema p-695” under near-field rotated ground motion |
publisher |
Iranian Society of Structrual Engineering (ISSE) |
publishDate |
2016 |
url |
https://doaj.org/article/f9b716a87c8d458aafc7fbd96b20d260 |
work_keys_str_mv |
AT mgerami evaluationofseismicparametersofsteelmomentresistingframesbasedonfemap695undernearfieldrotatedgroundmotion AT ahmashayekhi evaluationofseismicparametersofsteelmomentresistingframesbasedonfemap695undernearfieldrotatedgroundmotion AT nsiahpolo evaluationofseismicparametersofsteelmomentresistingframesbasedonfemap695undernearfieldrotatedgroundmotion |
_version_ |
1718441718014017536 |