Deep social force network for anomaly event detection
Abstract Anomaly event detection is vital in surveillance video analysis. However, how to learn the discriminative motion in the crowd scene is still not tackled. Here, a deep social force network by exploiting both social force extracting and deep motion coding is proposed. Given a grid of particle...
Guardado en:
Autores principales: | Xingming Yang, Zhiming Wang, Kewei Wu, Zhao Xie, Jinkui Hou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f9b737b35a6a4726b5ad426c877f8b3f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Anomaly detection in video sequences: A benchmark and computational model
por: Boyang Wan, et al.
Publicado: (2021) -
A deep learning method for video‐based action recognition
por: Guanwen Zhang, et al.
Publicado: (2021) -
Multi‐label learning based target detecting from multi‐frame data
por: Mengqing Mei, et al.
Publicado: (2021) -
MFNet‐LE: Multilevel fusion network with Laplacian embedding for face presentation attacks detection
por: Sijie Niu, et al.
Publicado: (2021) -
Multi‐dimensional weighted cross‐attention network in crowded scenes
por: Yefan Xie, et al.
Publicado: (2021)