Significance of Absorbing Fraction of Coating on Absorption Enhancement of Partially Coated Black Carbon Aerosols

Black carbon (BC), particularly internally mixed and aged BC, exerts a significant influence on the environment and climate. Black carbon coated by non-absorbing materials shows an enhancement of BC absorption, whereas absorptive coatings on BC can reduce the BC absorption enhancement. In this paper...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaolin Zhang, Yuanzhi Wang, Yu Zhou, Junyao Wang, Mao Mao
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/f9cefde26166443980c6c494a78b537c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Black carbon (BC), particularly internally mixed and aged BC, exerts a significant influence on the environment and climate. Black carbon coated by non-absorbing materials shows an enhancement of BC absorption, whereas absorptive coatings on BC can reduce the BC absorption enhancement. In this paper we use the multiple-sphere T-matrix method to accurately model the influence of the absorbing volume fraction of absorbing coatings on the reduction of the absorption enhancement of partially coated BC. The reduction of the absorption enhancement due to the absorbing coating exhibited a strong sensitivity to the absorbing volume fraction of the coating, and no reduction of BC absorption enhancement was seen for BC particles with non-absorbing coatings. We found that coatings with higher absorbing volume fraction, greater coated volume fraction of BC, higher shell/core ratio, and larger coated BC particle size caused stronger reductions of the BC absorption enhancement, whereas the impact of the BC’s fractal dimension was negligible. Moreover, the sensitivity of the reduction of absorption enhancement resulting from the ratio of the absorbing coating shell to the BC core increased for coatings with higher absorbing volume fractions, higher coated volume fractions of BC, or larger particle sizes, although this effect was weaker than the sensitivities to size distribution, absorbing volume fraction of coating, and coated volume fraction of BC. Reductions in the absorption enhancements resulting from the absorbing coating for partially coated BC with various size distributions typically varied in the range of 0.0–0.24 for thin coatings with shell/core ratio of 1.5 and between 0.0 and 0.43 for thick coatings with shell/core ratio of 2.7. In addition, we propose an empirical formula relating the reduction of BC absorption enhancement to the absorbing volume fraction of the coating, which could inform a quantitative understanding and further applications. Our study indicates the significance of the absorbing volume fraction of coatings on the absorption properties of BC.