Nanotherapeutics Overcoming the Blood-Brain Barrier for Glioblastoma Treatment

Glioblastoma (GBM) is the most common malignant primary brain tumor with a poor prognosis. The current standard treatment regimen represented by temozolomide/radiotherapy has an average survival time of 14.6 months, while the 5-year survival rate is still less than 5%. New therapeutics are still hig...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lin Tang, Yicheng Feng, Sai Gao, Qingchun Mu, Chaoyong Liu
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/f9e438306a1a47058f9d9880affffa4e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Glioblastoma (GBM) is the most common malignant primary brain tumor with a poor prognosis. The current standard treatment regimen represented by temozolomide/radiotherapy has an average survival time of 14.6 months, while the 5-year survival rate is still less than 5%. New therapeutics are still highly needed to improve the therapeutic outcome of GBM treatment. The blood-brain barrier (BBB) is the main barrier that prevents therapeutic drugs from reaching the brain. Nanotechnologies that enable drug delivery across the BBB hold great promise for the treatment of GBM. This review summarizes various drug delivery systems used to treat glioma and focuses on their approaches for overcoming the BBB to enhance the accumulation of small molecules, protein and gene drugs, etc. in the brain.