Quantum Nature of Dielectric Laser Accelerators
Dielectric laser accelerators (DLAs) hold great promise for producing economic and compact on-chip radiation sources. On-chip DLAs benefit from fabrication capabilities of the silicon industry and from breakthroughs in silicon-photonic nanostructures to enhance the interaction between particles and...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f9f1192806084e9c85fcae0cda3f4c9a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f9f1192806084e9c85fcae0cda3f4c9a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f9f1192806084e9c85fcae0cda3f4c9a2021-12-01T15:19:02ZQuantum Nature of Dielectric Laser Accelerators10.1103/PhysRevX.11.0410422160-3308https://doaj.org/article/f9f1192806084e9c85fcae0cda3f4c9a2021-12-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.041042http://doi.org/10.1103/PhysRevX.11.041042https://doaj.org/toc/2160-3308Dielectric laser accelerators (DLAs) hold great promise for producing economic and compact on-chip radiation sources. On-chip DLAs benefit from fabrication capabilities of the silicon industry and from breakthroughs in silicon-photonic nanostructures to enhance the interaction between particles and laser fields. Seemingly unrelated recent advances in the quantum interactions of electrons and light have raised interest in the underlying classical-quantum correspondence principle at the foundations of electron acceleration. Here, we present the observation of the underlying quantum nature of DLAs: observing quantized peaks in the electron-energy spectra. Our findings demonstrate quasi-phase-matching between an electron wave function and a light wave, which also demonstrates the role of the quantum wave function in the inverse Smith-Purcell effect. We harness the capabilities of an ultrafast transmission electron microscope (UTEM) to maintain a long electron-light interaction length extending over hundreds of periods of the laser pulse, mediated by a silicon-photonic nanograting DLA. The UTEM is shown as a new platform for characterization of future DLA concepts. The results raise fundamental questions regarding the role of quantum mechanics in DLA design, and more generally about the prospects of manipulating particles’ quantum wave functions in accelerator physics.Yuval AdivKangpeng WangRaphael DahanPayton BroaddusYu MiaoDylan BlackKenneth LeedleRobert L. ByerOlav SolgaardR. Joel EnglandIdo KaminerAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 4, p 041042 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 Yuval Adiv Kangpeng Wang Raphael Dahan Payton Broaddus Yu Miao Dylan Black Kenneth Leedle Robert L. Byer Olav Solgaard R. Joel England Ido Kaminer Quantum Nature of Dielectric Laser Accelerators |
description |
Dielectric laser accelerators (DLAs) hold great promise for producing economic and compact on-chip radiation sources. On-chip DLAs benefit from fabrication capabilities of the silicon industry and from breakthroughs in silicon-photonic nanostructures to enhance the interaction between particles and laser fields. Seemingly unrelated recent advances in the quantum interactions of electrons and light have raised interest in the underlying classical-quantum correspondence principle at the foundations of electron acceleration. Here, we present the observation of the underlying quantum nature of DLAs: observing quantized peaks in the electron-energy spectra. Our findings demonstrate quasi-phase-matching between an electron wave function and a light wave, which also demonstrates the role of the quantum wave function in the inverse Smith-Purcell effect. We harness the capabilities of an ultrafast transmission electron microscope (UTEM) to maintain a long electron-light interaction length extending over hundreds of periods of the laser pulse, mediated by a silicon-photonic nanograting DLA. The UTEM is shown as a new platform for characterization of future DLA concepts. The results raise fundamental questions regarding the role of quantum mechanics in DLA design, and more generally about the prospects of manipulating particles’ quantum wave functions in accelerator physics. |
format |
article |
author |
Yuval Adiv Kangpeng Wang Raphael Dahan Payton Broaddus Yu Miao Dylan Black Kenneth Leedle Robert L. Byer Olav Solgaard R. Joel England Ido Kaminer |
author_facet |
Yuval Adiv Kangpeng Wang Raphael Dahan Payton Broaddus Yu Miao Dylan Black Kenneth Leedle Robert L. Byer Olav Solgaard R. Joel England Ido Kaminer |
author_sort |
Yuval Adiv |
title |
Quantum Nature of Dielectric Laser Accelerators |
title_short |
Quantum Nature of Dielectric Laser Accelerators |
title_full |
Quantum Nature of Dielectric Laser Accelerators |
title_fullStr |
Quantum Nature of Dielectric Laser Accelerators |
title_full_unstemmed |
Quantum Nature of Dielectric Laser Accelerators |
title_sort |
quantum nature of dielectric laser accelerators |
publisher |
American Physical Society |
publishDate |
2021 |
url |
https://doaj.org/article/f9f1192806084e9c85fcae0cda3f4c9a |
work_keys_str_mv |
AT yuvaladiv quantumnatureofdielectriclaseraccelerators AT kangpengwang quantumnatureofdielectriclaseraccelerators AT raphaeldahan quantumnatureofdielectriclaseraccelerators AT paytonbroaddus quantumnatureofdielectriclaseraccelerators AT yumiao quantumnatureofdielectriclaseraccelerators AT dylanblack quantumnatureofdielectriclaseraccelerators AT kennethleedle quantumnatureofdielectriclaseraccelerators AT robertlbyer quantumnatureofdielectriclaseraccelerators AT olavsolgaard quantumnatureofdielectriclaseraccelerators AT rjoelengland quantumnatureofdielectriclaseraccelerators AT idokaminer quantumnatureofdielectriclaseraccelerators |
_version_ |
1718404849973854208 |