Quantum Nature of Dielectric Laser Accelerators

Dielectric laser accelerators (DLAs) hold great promise for producing economic and compact on-chip radiation sources. On-chip DLAs benefit from fabrication capabilities of the silicon industry and from breakthroughs in silicon-photonic nanostructures to enhance the interaction between particles and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuval Adiv, Kangpeng Wang, Raphael Dahan, Payton Broaddus, Yu Miao, Dylan Black, Kenneth Leedle, Robert L. Byer, Olav Solgaard, R. Joel England, Ido Kaminer
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/f9f1192806084e9c85fcae0cda3f4c9a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f9f1192806084e9c85fcae0cda3f4c9a
record_format dspace
spelling oai:doaj.org-article:f9f1192806084e9c85fcae0cda3f4c9a2021-12-01T15:19:02ZQuantum Nature of Dielectric Laser Accelerators10.1103/PhysRevX.11.0410422160-3308https://doaj.org/article/f9f1192806084e9c85fcae0cda3f4c9a2021-12-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.041042http://doi.org/10.1103/PhysRevX.11.041042https://doaj.org/toc/2160-3308Dielectric laser accelerators (DLAs) hold great promise for producing economic and compact on-chip radiation sources. On-chip DLAs benefit from fabrication capabilities of the silicon industry and from breakthroughs in silicon-photonic nanostructures to enhance the interaction between particles and laser fields. Seemingly unrelated recent advances in the quantum interactions of electrons and light have raised interest in the underlying classical-quantum correspondence principle at the foundations of electron acceleration. Here, we present the observation of the underlying quantum nature of DLAs: observing quantized peaks in the electron-energy spectra. Our findings demonstrate quasi-phase-matching between an electron wave function and a light wave, which also demonstrates the role of the quantum wave function in the inverse Smith-Purcell effect. We harness the capabilities of an ultrafast transmission electron microscope (UTEM) to maintain a long electron-light interaction length extending over hundreds of periods of the laser pulse, mediated by a silicon-photonic nanograting DLA. The UTEM is shown as a new platform for characterization of future DLA concepts. The results raise fundamental questions regarding the role of quantum mechanics in DLA design, and more generally about the prospects of manipulating particles’ quantum wave functions in accelerator physics.Yuval AdivKangpeng WangRaphael DahanPayton BroaddusYu MiaoDylan BlackKenneth LeedleRobert L. ByerOlav SolgaardR. Joel EnglandIdo KaminerAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 4, p 041042 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Yuval Adiv
Kangpeng Wang
Raphael Dahan
Payton Broaddus
Yu Miao
Dylan Black
Kenneth Leedle
Robert L. Byer
Olav Solgaard
R. Joel England
Ido Kaminer
Quantum Nature of Dielectric Laser Accelerators
description Dielectric laser accelerators (DLAs) hold great promise for producing economic and compact on-chip radiation sources. On-chip DLAs benefit from fabrication capabilities of the silicon industry and from breakthroughs in silicon-photonic nanostructures to enhance the interaction between particles and laser fields. Seemingly unrelated recent advances in the quantum interactions of electrons and light have raised interest in the underlying classical-quantum correspondence principle at the foundations of electron acceleration. Here, we present the observation of the underlying quantum nature of DLAs: observing quantized peaks in the electron-energy spectra. Our findings demonstrate quasi-phase-matching between an electron wave function and a light wave, which also demonstrates the role of the quantum wave function in the inverse Smith-Purcell effect. We harness the capabilities of an ultrafast transmission electron microscope (UTEM) to maintain a long electron-light interaction length extending over hundreds of periods of the laser pulse, mediated by a silicon-photonic nanograting DLA. The UTEM is shown as a new platform for characterization of future DLA concepts. The results raise fundamental questions regarding the role of quantum mechanics in DLA design, and more generally about the prospects of manipulating particles’ quantum wave functions in accelerator physics.
format article
author Yuval Adiv
Kangpeng Wang
Raphael Dahan
Payton Broaddus
Yu Miao
Dylan Black
Kenneth Leedle
Robert L. Byer
Olav Solgaard
R. Joel England
Ido Kaminer
author_facet Yuval Adiv
Kangpeng Wang
Raphael Dahan
Payton Broaddus
Yu Miao
Dylan Black
Kenneth Leedle
Robert L. Byer
Olav Solgaard
R. Joel England
Ido Kaminer
author_sort Yuval Adiv
title Quantum Nature of Dielectric Laser Accelerators
title_short Quantum Nature of Dielectric Laser Accelerators
title_full Quantum Nature of Dielectric Laser Accelerators
title_fullStr Quantum Nature of Dielectric Laser Accelerators
title_full_unstemmed Quantum Nature of Dielectric Laser Accelerators
title_sort quantum nature of dielectric laser accelerators
publisher American Physical Society
publishDate 2021
url https://doaj.org/article/f9f1192806084e9c85fcae0cda3f4c9a
work_keys_str_mv AT yuvaladiv quantumnatureofdielectriclaseraccelerators
AT kangpengwang quantumnatureofdielectriclaseraccelerators
AT raphaeldahan quantumnatureofdielectriclaseraccelerators
AT paytonbroaddus quantumnatureofdielectriclaseraccelerators
AT yumiao quantumnatureofdielectriclaseraccelerators
AT dylanblack quantumnatureofdielectriclaseraccelerators
AT kennethleedle quantumnatureofdielectriclaseraccelerators
AT robertlbyer quantumnatureofdielectriclaseraccelerators
AT olavsolgaard quantumnatureofdielectriclaseraccelerators
AT rjoelengland quantumnatureofdielectriclaseraccelerators
AT idokaminer quantumnatureofdielectriclaseraccelerators
_version_ 1718404849973854208