Data-driven analysis and forecasting of highway traffic dynamics
The demands on transportation systems continue to grow while the methods for analyzing and forecasting traffic conditions remain limited. Here the authors show a parameter-independent approach for an accurate description, identification and forecasting of spatio-temporal traffic patterns directly fr...
Guardado en:
Autores principales: | A. M. Avila, I. Mezić |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fa080d70c79b4d53bad8ce4cab97b10e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Forecasting Spatiotemporal Boundary of Emergency-Event-Based Traffic Congestion in Expressway Network Considering Highway Node Acceptance Capacity
por: Xingliang Liu, et al.
Publicado: (2021) -
An Improved Selective Ensemble Learning Method for Highway Traffic Flow State Identification
por: Zhanzhong Wang, et al.
Publicado: (2020) -
Evolutionary highways to persistent bacterial infection
por: Jennifer A. Bartell, et al.
Publicado: (2019) -
Big Data-Driven Macroeconomic Forecasting Model and Psychological Decision Behavior Analysis for Industry 4.0
por: Jie Liu
Publicado: (2021) -
Dynamic data-driven meta-analysis for prioritisation of host genes implicated in COVID-19
por: Nicholas Parkinson, et al.
Publicado: (2020)