Data-driven analysis and forecasting of highway traffic dynamics
The demands on transportation systems continue to grow while the methods for analyzing and forecasting traffic conditions remain limited. Here the authors show a parameter-independent approach for an accurate description, identification and forecasting of spatio-temporal traffic patterns directly fr...
Enregistré dans:
Auteurs principaux: | A. M. Avila, I. Mezić |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fa080d70c79b4d53bad8ce4cab97b10e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Forecasting Spatiotemporal Boundary of Emergency-Event-Based Traffic Congestion in Expressway Network Considering Highway Node Acceptance Capacity
par: Xingliang Liu, et autres
Publié: (2021) -
An Improved Selective Ensemble Learning Method for Highway Traffic Flow State Identification
par: Zhanzhong Wang, et autres
Publié: (2020) -
Evolutionary highways to persistent bacterial infection
par: Jennifer A. Bartell, et autres
Publié: (2019) -
Big Data-Driven Macroeconomic Forecasting Model and Psychological Decision Behavior Analysis for Industry 4.0
par: Jie Liu
Publié: (2021) -
Dynamic data-driven meta-analysis for prioritisation of host genes implicated in COVID-19
par: Nicholas Parkinson, et autres
Publié: (2020)