Rumor Detection Based on Attention CNN and Time Series of Context Information
This study aims to explore the time series context and sentiment polarity features of rumors’ life cycles, and how to use them to optimize the CNN model parameters and improve the classification effect. The proposed model is a convolutional neural network embedded with an attention mechanism of sent...
Guardado en:
Autores principales: | Yun Peng, Jianmei Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fa0f72e6947640f0891bc0edcf66803b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improving Accuracy using The ASERLU layer in CNN-BiLSTM Architecture on Sentiment Analysis
por: Sandi Hermawan, et al.
Publicado: (2021) -
Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network (CNN)
por: Fani Nurona Cahya, et al.
Publicado: (2021) -
Peningkatan Kualitas Citra Reduksi Noise Menggunakan Iterative Denoising and Backward Projection-CNN dan TFM-CLAHE Pada Citra 24 Bit
por: Irpan Adiputra Pardosi, et al.
Publicado: (2021) -
Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine
por: Rizki Wahyudi, et al.
Publicado: (2021) -
The agency of the forum: Mechanisms for algorithmic accountability through the lens of agency
por: Florian Cech
Publicado: (2021)