Efficient Design and Sustainability Assessment of Wastewater Treatment Networks using the P-graph Approach: A Tannery Waste Case Study

In the tannery industry approximately, 30 - 35 m3 of wastewater (WW) is generated per ton of rawhide processed. The WW comprises high concentrations of salts, ammonia, dye, solvents, and chromium. Of particular interest is chromium, which has been proven to cause dermatological, developmental, and r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Emmanuel A. Aboagye, Jean Pimentel, Ákos Orosz, Heriberto Cabezas, Ferenc Friedler, Kirti M. Yenkie
Formato: article
Lenguaje:EN
Publicado: AIDIC Servizi S.r.l. 2021
Materias:
Acceso en línea:https://doaj.org/article/fa12fa3e37034881b04e793c7e4f34cd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In the tannery industry approximately, 30 - 35 m3 of wastewater (WW) is generated per ton of rawhide processed. The WW comprises high concentrations of salts, ammonia, dye, solvents, and chromium. Of particular interest is chromium, which has been proven to cause dermatological, developmental, and reproductive issues on exposure. Thus, there is a need for appropriate treatment of the tannery WW before it is discharged for natural remediation. However, designing a treatment process is multifaceted due to the availability of multiple technologies that can perform similar tasks and the complex composition of waste streams. This necessitates the treatment to be performed in stages namely, primary, secondary, and tertiary. In some cases, pretreatment is required to enhance the recovery in the following stages. Due to the combinatorial nature of this problem, the P-graph approach, which uses principles from graph theory, can be used to synthesize a treatment pathway by selecting appropriate technologies at each stage, while meeting required purity specifications. Furthermore, the P-graph approach can provide alternate feasible treatment structures ranked based on Economics as well as Sustainability indicators, such as the Sustainable Process Index (SPI). In this work, a tannery WW case study is investigated with multiple stages and treatment technologies. A complex maximal structure is generated comprising all possible technologies, flows, connections, bypasses, mixers, and splitters. The models for each technology involve capital and operating costs, efficiency, and SPI at each stage of the treatment process. This problem is formulated in P-graph and solved using the Accelerated Branch-and-Bound algorithm.