A fault feature extraction algorithm based on CEEMD-TVD-MOMEDA
Rolling bearings are indispensable key components in mechanical equipment, and they are also one of the most easily damaged components. To solve the problem of bearing fault feature extraction under strong noise interference, a combination of complementary ensemble average empirical mode decomposit...
Guardado en:
Autores principales: | Jingzong Yang, Tianqing Yang, Chunchao Shi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Tamkang University Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fa15a986bad5459a8d6206ee871d9d29 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Load forecasting of refrigerated display cabinet based on CEEMD–IPSO–LSTM combined model
por: Pei Yuan, et al.
Publicado: (2021) -
Monthly runoff prediction using modified CEEMD-based weighted integrated model
por: Xinqing Yan, et al.
Publicado: (2021) -
Short-term traffic flow prediction of expressway based on CEEMD-GRU combination model
por: Fuxin SHEN, et al.
Publicado: (2021) -
Using Temporal and Spatial Scales to Unravel the Effects of Climatic Factors on Vegetation Variations in China
por: Yaodong Jing, et al.
Publicado: (2021) -
Early Fault Diagnosis of Shaft Crack Based on Double Optimization Maximum Correlated Kurtosis Deconvolution and Variational Mode Decomposition
por: Tongwei Ma, et al.
Publicado: (2021)