Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning
Abstract Cross-sectional X-ray imaging has become the standard for staging most solid organ malignancies. However, for some malignancies such as urinary bladder cancer, the ability to accurately assess local extent of the disease and understand response to systemic chemotherapy is limited with curre...
Guardado en:
Autores principales: | Kenny H. Cha, Lubomir Hadjiiski, Heang-Ping Chan, Alon Z. Weizer, Ajjai Alva, Richard H. Cohan, Elaine M. Caoili, Chintana Paramagul, Ravi K. Samala |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fa5b71fe40344297b76499a04ea5ed9b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
CT-based Radiomics to Predict Recurrence of Bladder Cancer after Resection in One Year: A Preliminary Study
por: ZHANG Gumuyang, et al.
Publicado: (2021) -
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
por: Hwan-ho Cho, et al.
Publicado: (2021) -
Prognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal Adenocarcinoma
por: Farzad Khalvati, et al.
Publicado: (2019) -
CT based radiomic approach on first line pembrolizumab in lung cancer
por: Marta Zerunian, et al.
Publicado: (2021) -
Effects of interobserver and interdisciplinary segmentation variabilities on CT-based radiomics for pancreatic cancer
por: Jeffrey Wong, et al.
Publicado: (2021)