The epigenetic trans-silencing effect in Drosophila involves maternally-transmitted small RNAs whose production depends on the piRNA pathway and HP1.
<h4>Background</h4>The study of P transposable element repression in Drosophila melanogaster led to the discovery of the Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fa75b7c5714340a781fd87871722f6e0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fa75b7c5714340a781fd87871722f6e0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fa75b7c5714340a781fd87871722f6e02021-12-02T20:20:58ZThe epigenetic trans-silencing effect in Drosophila involves maternally-transmitted small RNAs whose production depends on the piRNA pathway and HP1.1932-620310.1371/journal.pone.0011032https://doaj.org/article/fa75b7c5714340a781fd87871722f6e02010-06-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/20559422/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>The study of P transposable element repression in Drosophila melanogaster led to the discovery of the Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS") has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. Phenotypic and genetic analysis have shown that TSE exhibits variegation in ovaries, displays a maternal effect as well as epigenetic transmission through meiosis and involves heterochromatin (including HP1) and RNA silencing.<h4>Principal findings</h4>Here, we show that mutations in squash and zucchini, which are involved in the piwi-interacting RNA (piRNA) silencing pathway, strongly affect TSE. In addition, we carried out a molecular analysis of TSE and show that silencing is correlated to the accumulation of lacZ small RNAs in ovaries. Finally, we show that the production of these small RNAs is sensitive to mutations affecting squash and zucchini, as well as to the dose of HP1.<h4>Conclusions and significance</h4>Thus, our results indicate that the TSE represents a bona fide piRNA-based repression. In addition, the sensitivity of TSE to HP1 dose suggests that in Drosophila, as previously shown in Schizosaccharomyces pombe, a RNA silencing pathway can depend on heterochromatin components.Anne-Laure TodeschiniLaure TeyssetValérie DelmarreStéphane RonsserayPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 5, Iss 6, p e11032 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Anne-Laure Todeschini Laure Teysset Valérie Delmarre Stéphane Ronsseray The epigenetic trans-silencing effect in Drosophila involves maternally-transmitted small RNAs whose production depends on the piRNA pathway and HP1. |
description |
<h4>Background</h4>The study of P transposable element repression in Drosophila melanogaster led to the discovery of the Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS") has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. Phenotypic and genetic analysis have shown that TSE exhibits variegation in ovaries, displays a maternal effect as well as epigenetic transmission through meiosis and involves heterochromatin (including HP1) and RNA silencing.<h4>Principal findings</h4>Here, we show that mutations in squash and zucchini, which are involved in the piwi-interacting RNA (piRNA) silencing pathway, strongly affect TSE. In addition, we carried out a molecular analysis of TSE and show that silencing is correlated to the accumulation of lacZ small RNAs in ovaries. Finally, we show that the production of these small RNAs is sensitive to mutations affecting squash and zucchini, as well as to the dose of HP1.<h4>Conclusions and significance</h4>Thus, our results indicate that the TSE represents a bona fide piRNA-based repression. In addition, the sensitivity of TSE to HP1 dose suggests that in Drosophila, as previously shown in Schizosaccharomyces pombe, a RNA silencing pathway can depend on heterochromatin components. |
format |
article |
author |
Anne-Laure Todeschini Laure Teysset Valérie Delmarre Stéphane Ronsseray |
author_facet |
Anne-Laure Todeschini Laure Teysset Valérie Delmarre Stéphane Ronsseray |
author_sort |
Anne-Laure Todeschini |
title |
The epigenetic trans-silencing effect in Drosophila involves maternally-transmitted small RNAs whose production depends on the piRNA pathway and HP1. |
title_short |
The epigenetic trans-silencing effect in Drosophila involves maternally-transmitted small RNAs whose production depends on the piRNA pathway and HP1. |
title_full |
The epigenetic trans-silencing effect in Drosophila involves maternally-transmitted small RNAs whose production depends on the piRNA pathway and HP1. |
title_fullStr |
The epigenetic trans-silencing effect in Drosophila involves maternally-transmitted small RNAs whose production depends on the piRNA pathway and HP1. |
title_full_unstemmed |
The epigenetic trans-silencing effect in Drosophila involves maternally-transmitted small RNAs whose production depends on the piRNA pathway and HP1. |
title_sort |
epigenetic trans-silencing effect in drosophila involves maternally-transmitted small rnas whose production depends on the pirna pathway and hp1. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2010 |
url |
https://doaj.org/article/fa75b7c5714340a781fd87871722f6e0 |
work_keys_str_mv |
AT annelauretodeschini theepigenetictranssilencingeffectindrosophilainvolvesmaternallytransmittedsmallrnaswhoseproductiondependsonthepirnapathwayandhp1 AT laureteysset theepigenetictranssilencingeffectindrosophilainvolvesmaternallytransmittedsmallrnaswhoseproductiondependsonthepirnapathwayandhp1 AT valeriedelmarre theepigenetictranssilencingeffectindrosophilainvolvesmaternallytransmittedsmallrnaswhoseproductiondependsonthepirnapathwayandhp1 AT stephaneronsseray theepigenetictranssilencingeffectindrosophilainvolvesmaternallytransmittedsmallrnaswhoseproductiondependsonthepirnapathwayandhp1 AT annelauretodeschini epigenetictranssilencingeffectindrosophilainvolvesmaternallytransmittedsmallrnaswhoseproductiondependsonthepirnapathwayandhp1 AT laureteysset epigenetictranssilencingeffectindrosophilainvolvesmaternallytransmittedsmallrnaswhoseproductiondependsonthepirnapathwayandhp1 AT valeriedelmarre epigenetictranssilencingeffectindrosophilainvolvesmaternallytransmittedsmallrnaswhoseproductiondependsonthepirnapathwayandhp1 AT stephaneronsseray epigenetictranssilencingeffectindrosophilainvolvesmaternallytransmittedsmallrnaswhoseproductiondependsonthepirnapathwayandhp1 |
_version_ |
1718374203913142272 |