Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network
In this article, a temporal convolutional network (TCN)-based model is proposed to retrieve significant wave height (<inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula>) from X-band nautical radar images. Three types of features are first ex...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fab7438fd7534d46837baaaa5507f28a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fab7438fd7534d46837baaaa5507f28a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fab7438fd7534d46837baaaa5507f28a2021-11-20T00:00:22ZWave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network2151-153510.1109/JSTARS.2021.3124969https://doaj.org/article/fab7438fd7534d46837baaaa5507f28a2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9601171/https://doaj.org/toc/2151-1535In this article, a temporal convolutional network (TCN)-based model is proposed to retrieve significant wave height (<inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula>) from X-band nautical radar images. Three types of features are first extracted from radar image sequences based on signal-to-noise ratio (SNR), ensemble empirical mode decomposition (EEMD), and gray level cooccurrence matrix methods, respectively. Then, feature vectors are input into the proposed TCN-based regression model to produce <inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula> estimation. Radar data are collected from a moving vessel at the East Coast of Canada, as well as the simultaneous wave data measured by several wave buoys deployed nearby are used for model training and testing. Experimental results after averaging show that TCN-based model further improves the <inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula> estimation accuracy, with reductions of root-mean-square errors by 0.33 and 0.10 m, respectively, compared to the SNR-based and the EEMD-based linear fitting methods. It has also been found that under the same feature extraction scheme, TCN outperforms other machine learning-based algorithms including support vector regression and the gated recurrent unit network.Weimin HuangZhiding YangXinwei ChenIEEEarticleSignificant wave height (<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$H_s$</tex-math> </inline-formula>)temporal convolutional network (TCN)X-band nautical radarOcean engineeringTC1501-1800Geophysics. Cosmic physicsQC801-809ENIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 11395-11405 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Significant wave height (<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$H_s$</tex-math> </inline-formula>) temporal convolutional network (TCN) X-band nautical radar Ocean engineering TC1501-1800 Geophysics. Cosmic physics QC801-809 |
spellingShingle |
Significant wave height (<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$H_s$</tex-math> </inline-formula>) temporal convolutional network (TCN) X-band nautical radar Ocean engineering TC1501-1800 Geophysics. Cosmic physics QC801-809 Weimin Huang Zhiding Yang Xinwei Chen Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network |
description |
In this article, a temporal convolutional network (TCN)-based model is proposed to retrieve significant wave height (<inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula>) from X-band nautical radar images. Three types of features are first extracted from radar image sequences based on signal-to-noise ratio (SNR), ensemble empirical mode decomposition (EEMD), and gray level cooccurrence matrix methods, respectively. Then, feature vectors are input into the proposed TCN-based regression model to produce <inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula> estimation. Radar data are collected from a moving vessel at the East Coast of Canada, as well as the simultaneous wave data measured by several wave buoys deployed nearby are used for model training and testing. Experimental results after averaging show that TCN-based model further improves the <inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula> estimation accuracy, with reductions of root-mean-square errors by 0.33 and 0.10 m, respectively, compared to the SNR-based and the EEMD-based linear fitting methods. It has also been found that under the same feature extraction scheme, TCN outperforms other machine learning-based algorithms including support vector regression and the gated recurrent unit network. |
format |
article |
author |
Weimin Huang Zhiding Yang Xinwei Chen |
author_facet |
Weimin Huang Zhiding Yang Xinwei Chen |
author_sort |
Weimin Huang |
title |
Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network |
title_short |
Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network |
title_full |
Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network |
title_fullStr |
Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network |
title_full_unstemmed |
Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network |
title_sort |
wave height estimation from x-band nautical radar images using temporal convolutional network |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/fab7438fd7534d46837baaaa5507f28a |
work_keys_str_mv |
AT weiminhuang waveheightestimationfromxbandnauticalradarimagesusingtemporalconvolutionalnetwork AT zhidingyang waveheightestimationfromxbandnauticalradarimagesusingtemporalconvolutionalnetwork AT xinweichen waveheightestimationfromxbandnauticalradarimagesusingtemporalconvolutionalnetwork |
_version_ |
1718419874283257856 |