Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network

In this article, a temporal convolutional network (TCN)-based model is proposed to retrieve significant wave height (<inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula>) from X-band nautical radar images. Three types of features are first ex...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Weimin Huang, Zhiding Yang, Xinwei Chen
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/fab7438fd7534d46837baaaa5507f28a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fab7438fd7534d46837baaaa5507f28a
record_format dspace
spelling oai:doaj.org-article:fab7438fd7534d46837baaaa5507f28a2021-11-20T00:00:22ZWave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network2151-153510.1109/JSTARS.2021.3124969https://doaj.org/article/fab7438fd7534d46837baaaa5507f28a2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9601171/https://doaj.org/toc/2151-1535In this article, a temporal convolutional network (TCN)-based model is proposed to retrieve significant wave height (<inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula>) from X-band nautical radar images. Three types of features are first extracted from radar image sequences based on signal-to-noise ratio (SNR), ensemble empirical mode decomposition (EEMD), and gray level cooccurrence matrix methods, respectively. Then, feature vectors are input into the proposed TCN-based regression model to produce <inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula> estimation. Radar data are collected from a moving vessel at the East Coast of Canada, as well as the simultaneous wave data measured by several wave buoys deployed nearby are used for model training and testing. Experimental results after averaging show that TCN-based model further improves the <inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula> estimation accuracy, with reductions of root-mean-square errors by 0.33 and 0.10 m, respectively, compared to the SNR-based and the EEMD-based linear fitting methods. It has also been found that under the same feature extraction scheme, TCN outperforms other machine learning-based algorithms including support vector regression and the gated recurrent unit network.Weimin HuangZhiding YangXinwei ChenIEEEarticleSignificant wave height (<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$H_s$</tex-math> </inline-formula>)temporal convolutional network (TCN)X-band nautical radarOcean engineeringTC1501-1800Geophysics. Cosmic physicsQC801-809ENIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 11395-11405 (2021)
institution DOAJ
collection DOAJ
language EN
topic Significant wave height (<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$H_s$</tex-math> </inline-formula>)
temporal convolutional network (TCN)
X-band nautical radar
Ocean engineering
TC1501-1800
Geophysics. Cosmic physics
QC801-809
spellingShingle Significant wave height (<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$H_s$</tex-math> </inline-formula>)
temporal convolutional network (TCN)
X-band nautical radar
Ocean engineering
TC1501-1800
Geophysics. Cosmic physics
QC801-809
Weimin Huang
Zhiding Yang
Xinwei Chen
Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network
description In this article, a temporal convolutional network (TCN)-based model is proposed to retrieve significant wave height (<inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula>) from X-band nautical radar images. Three types of features are first extracted from radar image sequences based on signal-to-noise ratio (SNR), ensemble empirical mode decomposition (EEMD), and gray level cooccurrence matrix methods, respectively. Then, feature vectors are input into the proposed TCN-based regression model to produce <inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula> estimation. Radar data are collected from a moving vessel at the East Coast of Canada, as well as the simultaneous wave data measured by several wave buoys deployed nearby are used for model training and testing. Experimental results after averaging show that TCN-based model further improves the <inline-formula><tex-math notation="LaTeX">$H_s$</tex-math></inline-formula> estimation accuracy, with reductions of root-mean-square errors by 0.33 and 0.10 m, respectively, compared to the SNR-based and the EEMD-based linear fitting methods. It has also been found that under the same feature extraction scheme, TCN outperforms other machine learning-based algorithms including support vector regression and the gated recurrent unit network.
format article
author Weimin Huang
Zhiding Yang
Xinwei Chen
author_facet Weimin Huang
Zhiding Yang
Xinwei Chen
author_sort Weimin Huang
title Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network
title_short Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network
title_full Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network
title_fullStr Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network
title_full_unstemmed Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network
title_sort wave height estimation from x-band nautical radar images using temporal convolutional network
publisher IEEE
publishDate 2021
url https://doaj.org/article/fab7438fd7534d46837baaaa5507f28a
work_keys_str_mv AT weiminhuang waveheightestimationfromxbandnauticalradarimagesusingtemporalconvolutionalnetwork
AT zhidingyang waveheightestimationfromxbandnauticalradarimagesusingtemporalconvolutionalnetwork
AT xinweichen waveheightestimationfromxbandnauticalradarimagesusingtemporalconvolutionalnetwork
_version_ 1718419874283257856