Computational modeling sheds light on structural evolution in metallic glasses and supercooled liquids
Abstract This article presents an overview of three challenging issues that are currently being debated in the community researching on the evolution of amorphous structures in metallic glasses and their parent supercooled liquids. Our emphasis is on the valuable insights acquired in recent computat...
Guardado en:
Autores principales: | Jun Ding, En Ma |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fabb56c3d58b45a484683164e9bb524e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning
por: Qi Wang, et al.
Publicado: (2020) -
Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution
por: Xinnan Mao, et al.
Publicado: (2021) -
Computational screening study of double transition metal carbonitrides M′2M″CNO2-MXene as catalysts for hydrogen evolution reaction
por: Zhoulan Zeng, et al.
Publicado: (2021) -
Atomic-scale structural signature of dynamic heterogeneities in metallic liquids
por: Alain Pasturel, et al.
Publicado: (2017) -
Rational design of chemically complex metallic glasses by hybrid modeling guided machine learning
por: Z. Q. Zhou, et al.
Publicado: (2021)