Nature inspired optimization tools for SVMs - NIOTS
Support Vector Machines (SVMs) technique for achieving classifiers and regressors. However, to obtain models with high accuracy and low complexity, it is necessary to define the kernel parameters as well as the parameters of the training model, which are called hyperparameters. The challenge of defi...
Guardado en:
Autores principales: | Carlos Eduardo da Silva Santos, Leandro dos Santos Coelho, Carlos Humberto Llanos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fabf074cb0ae4dbbb4b6ddd91194fe52 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Variable Search Space Converging Genetic Algorithm for Solving System of Non-linear Equations
por: SS Venkatesh, et al.
Publicado: (2020) -
Multi-objective optimization of time-cost-quality in construction projects using genetic algorithm
por: Isikyildiz,Setenay, et al.
Publicado: (2020) -
Robust Optimization of the Multi-Objective Multi-Period Location-Routing Problem for Epidemic Logistics System With Uncertain Demand
por: Shengjie Long, et al.
Publicado: (2021) -
Genetic Algorithms as Computational Methods for Finite-Dimensional Optimization
por: Nataliya Gulayeva, et al.
Publicado: (2021) -
An efficient tree seed inspired algorithm for parameter estimation of Photovoltaic models
por: Ayşe Beşkirli, et al.
Publicado: (2022)