Whole genome sequencing and characteristics of Escherichia coli with co-existence of ESBL and mcr genes from pigs.
This study aimed to analyze three ESBL-producing E. coli co-harboring mcr and ESBL genes from a healthy fattening pig (E. 431) and two sick pigs (ECP.81 and ECP.82) in Thailand using Whole Genome Sequencing (WGS) using either Illumina MiSeq or HiSeq PE150 platforms to determine their genome and tran...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fac57fb3c3654c54a31b5aa2480814d1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This study aimed to analyze three ESBL-producing E. coli co-harboring mcr and ESBL genes from a healthy fattening pig (E. 431) and two sick pigs (ECP.81 and ECP.82) in Thailand using Whole Genome Sequencing (WGS) using either Illumina MiSeq or HiSeq PE150 platforms to determine their genome and transmissible plasmids. E. 431 carrying mcr-2.1 and mcr-3.1 belonged to serotype O142:H31 with ST29 sequence type. ECP.81 and ECP.82 from sick pigs harboring mcr-1.1 and mcr-3.1 were serotype O9:H9 with ST10. Two mcr-1.1 gene cassettes from ECP.81 and ECP.82 were located on IncI2 plasmid with 98% identity to plasmid pHNSHP45. The mcr-2.1-carrying contig in E. 431 showed 100% identity to plasmid pKP37-BE with the upstream flanking sequence of IS1595. All three mcr-3.1-carrying contigs contained the ΔTnAs2-mcr-3.1-dgkA core segment and had high nucleotide similarity (85-100%) to mcr-3.1-carrying plasmid, pWJ1. The mobile elements i.e. IS4321, ΔTnAs2, ISKpn40 and IS3 were identified in the flanking regions of mcr-3. Several genes conferring resistance to aminoglycosides (aac(3)-IIa, aadA1, aadA2b, aph(3'')-Ib, aph(3')-IIa and aph(6)-Id), macrolides (mdf(A)), phenicols (cmlA1), sulphonamide (sul3) and tetracycline (tet(A) and tet(M)) were located on plasmids, of which their presence was well corresponded to the host's resistance phenotype. Amino acid substitutions S83L and D87G in GyrA and S80I and E62K in ParC were observed. The blaCTX-M-14 and blaCTX-M-55 genes were identified among these isolates additionally harbored blaTEM-1B. Co-transfer of mcr-1.1/blaTEM-1B and mcr-3.1/blaCTX-M-55 was observed in ECP.81 and ECP.82 but not located on the same plasmid. The results highlighted that application of advanced innovation technology of WGS in AMR monitoring and surveillance provide comprehensive information of AMR genotype that could yield invaluable benefits to development of control and prevention strategic actions plan for AMR. |
---|