Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds
Let Γ(M) be the set of all global continuous cross sections of a continuous family M of compact complex manifolds on a compact Hausdorff space X. In this paper, we introduce a C(X)-manifold structure on Γ(M). Especially, if X is contractible, then Γ(M) is a finite-dimensional C(X)-manifold. Here, C(...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fac691b7b963485eb6091e61c87f961a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fac691b7b963485eb6091e61c87f961a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fac691b7b963485eb6091e61c87f961a2021-12-02T10:44:17ZFinite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds2300-744310.1515/coma-2019-0012https://doaj.org/article/fac691b7b963485eb6091e61c87f961a2019-01-01T00:00:00Zhttp://www.degruyter.com/view/j/coma.2019.6.issue-1/coma-2019-0012/coma-2019-0012.xml?format=INThttps://doaj.org/toc/2300-7443Let Γ(M) be the set of all global continuous cross sections of a continuous family M of compact complex manifolds on a compact Hausdorff space X. In this paper, we introduce a C(X)-manifold structure on Γ(M). Especially, if X is contractible, then Γ(M) is a finite-dimensional C(X)-manifold. Here, C(X) denotes the Banach algebra of all complex-valued continuous functions on X.Yagisita HirokiDe Gruyterarticletopological deformation of complex analytic structuresinfinite-dimensional manifoldcommutative c*-algebraserre-swan theorem19l9932q9946j9958b99MathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 228-264 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
topological deformation of complex analytic structures infinite-dimensional manifold commutative c*-algebra serre-swan theorem 19l99 32q99 46j99 58b99 Mathematics QA1-939 |
spellingShingle |
topological deformation of complex analytic structures infinite-dimensional manifold commutative c*-algebra serre-swan theorem 19l99 32q99 46j99 58b99 Mathematics QA1-939 Yagisita Hiroki Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds |
description |
Let Γ(M) be the set of all global continuous cross sections of a continuous family M of compact complex manifolds on a compact Hausdorff space X. In this paper, we introduce a C(X)-manifold structure on Γ(M). Especially, if X is contractible, then Γ(M) is a finite-dimensional C(X)-manifold. Here, C(X) denotes the Banach algebra of all complex-valued continuous functions on X. |
format |
article |
author |
Yagisita Hiroki |
author_facet |
Yagisita Hiroki |
author_sort |
Yagisita Hiroki |
title |
Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds |
title_short |
Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds |
title_full |
Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds |
title_fullStr |
Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds |
title_full_unstemmed |
Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds |
title_sort |
finite-dimensional complex manifolds on commutative banach algebras and continuous families of compact complex manifolds |
publisher |
De Gruyter |
publishDate |
2019 |
url |
https://doaj.org/article/fac691b7b963485eb6091e61c87f961a |
work_keys_str_mv |
AT yagisitahiroki finitedimensionalcomplexmanifoldsoncommutativebanachalgebrasandcontinuousfamiliesofcompactcomplexmanifolds |
_version_ |
1718396804772397056 |