Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds

Let Γ(M) be the set of all global continuous cross sections of a continuous family M of compact complex manifolds on a compact Hausdorff space X. In this paper, we introduce a C(X)-manifold structure on Γ(M). Especially, if X is contractible, then Γ(M) is a finite-dimensional C(X)-manifold. Here, C(...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Yagisita Hiroki
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2019
Materias:
Acceso en línea:https://doaj.org/article/fac691b7b963485eb6091e61c87f961a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fac691b7b963485eb6091e61c87f961a
record_format dspace
spelling oai:doaj.org-article:fac691b7b963485eb6091e61c87f961a2021-12-02T10:44:17ZFinite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds2300-744310.1515/coma-2019-0012https://doaj.org/article/fac691b7b963485eb6091e61c87f961a2019-01-01T00:00:00Zhttp://www.degruyter.com/view/j/coma.2019.6.issue-1/coma-2019-0012/coma-2019-0012.xml?format=INThttps://doaj.org/toc/2300-7443Let Γ(M) be the set of all global continuous cross sections of a continuous family M of compact complex manifolds on a compact Hausdorff space X. In this paper, we introduce a C(X)-manifold structure on Γ(M). Especially, if X is contractible, then Γ(M) is a finite-dimensional C(X)-manifold. Here, C(X) denotes the Banach algebra of all complex-valued continuous functions on X.Yagisita HirokiDe Gruyterarticletopological deformation of complex analytic structuresinfinite-dimensional manifoldcommutative c*-algebraserre-swan theorem19l9932q9946j9958b99MathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 228-264 (2019)
institution DOAJ
collection DOAJ
language EN
topic topological deformation of complex analytic structures
infinite-dimensional manifold
commutative c*-algebra
serre-swan theorem
19l99
32q99
46j99
58b99
Mathematics
QA1-939
spellingShingle topological deformation of complex analytic structures
infinite-dimensional manifold
commutative c*-algebra
serre-swan theorem
19l99
32q99
46j99
58b99
Mathematics
QA1-939
Yagisita Hiroki
Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds
description Let Γ(M) be the set of all global continuous cross sections of a continuous family M of compact complex manifolds on a compact Hausdorff space X. In this paper, we introduce a C(X)-manifold structure on Γ(M). Especially, if X is contractible, then Γ(M) is a finite-dimensional C(X)-manifold. Here, C(X) denotes the Banach algebra of all complex-valued continuous functions on X.
format article
author Yagisita Hiroki
author_facet Yagisita Hiroki
author_sort Yagisita Hiroki
title Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds
title_short Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds
title_full Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds
title_fullStr Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds
title_full_unstemmed Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds
title_sort finite-dimensional complex manifolds on commutative banach algebras and continuous families of compact complex manifolds
publisher De Gruyter
publishDate 2019
url https://doaj.org/article/fac691b7b963485eb6091e61c87f961a
work_keys_str_mv AT yagisitahiroki finitedimensionalcomplexmanifoldsoncommutativebanachalgebrasandcontinuousfamiliesofcompactcomplexmanifolds
_version_ 1718396804772397056