YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices
Object detection in aerial images has been an active research area thanks to the vast availability of unmanned aerial vehicles (UAVs). Along with the increase of computational power, deep learning algorithms are commonly used for object detection tasks. However, aerial images have large variations,...
Guardado en:
Autores principales: | Hong Vin Koay, Joon Huang Chuah, Chee-Onn Chow, Yang-Lang Chang, Keh Kok Yong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fac6d570a1b34a55a1fd799b620df404 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identifying Damaged Buildings in Aerial Images Using the Object Detection Method
por: Lingfei Shi, et al.
Publicado: (2021) -
Unsupervised Cluster Guided Object Detection in Aerial Images
por: Jiajia Liao, et al.
Publicado: (2021) -
Pedestrian and Vehicle Detection in Autonomous Vehicle Perception Systems—A Review
por: Luiz G. Galvao, et al.
Publicado: (2021) -
Determination of Riparian Vegetation Biomass from an Unmanned Aerial Vehicle (UAV)
por: Alessandro Matese, et al.
Publicado: (2021) -
Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey
por: Jia Liu, et al.
Publicado: (2021)