Solving Nonlinear Boundary Value Problems Using the Higher Order Haar Wavelet Method
The current study is focused on development and adaption of the higher order Haar wavelet method for solving nonlinear ordinary differential equations. The proposed approach is implemented on two sample problems—the Riccati and the Liénard equations. The convergence and accuracy of the proposed high...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/facb58d4f57943dcae6581d0a0970904 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The current study is focused on development and adaption of the higher order Haar wavelet method for solving nonlinear ordinary differential equations. The proposed approach is implemented on two sample problems—the Riccati and the Liénard equations. The convergence and accuracy of the proposed higher order Haar wavelet method are compared with the widely used Haar wavelet method. The comparison of numerical results with exact solutions is performed. The complexity issues of the higher order Haar wavelet method are discussed. |
---|