Solving Nonlinear Boundary Value Problems Using the Higher Order Haar Wavelet Method
The current study is focused on development and adaption of the higher order Haar wavelet method for solving nonlinear ordinary differential equations. The proposed approach is implemented on two sample problems—the Riccati and the Liénard equations. The convergence and accuracy of the proposed high...
Enregistré dans:
Auteurs principaux: | Mart Ratas, Jüri Majak, Andrus Salupere |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/facb58d4f57943dcae6581d0a0970904 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
par: Ahsan Muhammad, et autres
Publié: (2021) -
Haar wavelet scrutinization of heat and mass transfer features during the convective boundary layer flow of a nanofluid moving over a nonlinearly stretching sheet
par: Vishwanath B. Awati, et autres
Publié: (2021) -
State analysis of time-varying singular nonlinear systems using Legendre wavelets
par: Raja Balachandar,S., et autres
Publié: (2015) -
Experimental evaluation and numerical modelling of the quality of photovoltaic modules
par: Kristo Karjust, et autres
Publié: (2021) -
Boubaker Wavelets Functions: Properties and Applications
par: Suha N. Shihab, et autres
Publié: (2021)