Solving Nonlinear Boundary Value Problems Using the Higher Order Haar Wavelet Method
The current study is focused on development and adaption of the higher order Haar wavelet method for solving nonlinear ordinary differential equations. The proposed approach is implemented on two sample problems—the Riccati and the Liénard equations. The convergence and accuracy of the proposed high...
Guardado en:
Autores principales: | Mart Ratas, Jüri Majak, Andrus Salupere |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/facb58d4f57943dcae6581d0a0970904 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
por: Ahsan Muhammad, et al.
Publicado: (2021) -
Haar wavelet scrutinization of heat and mass transfer features during the convective boundary layer flow of a nanofluid moving over a nonlinearly stretching sheet
por: Vishwanath B. Awati, et al.
Publicado: (2021) -
State analysis of time-varying singular nonlinear systems using Legendre wavelets
por: Raja Balachandar,S., et al.
Publicado: (2015) -
Experimental evaluation and numerical modelling of the quality of photovoltaic modules
por: Kristo Karjust, et al.
Publicado: (2021) -
Boubaker Wavelets Functions: Properties and Applications
por: Suha N. Shihab, et al.
Publicado: (2021)