A two-stage multiple-point conceptual model to predict river stage-discharge process using machine learning approaches
Due to the complex nature of river stage-discharge process, the present study tried to develop a unique strategy to predict it precisely. The proposed conceptual strategy has some advantages to cover the shortcomings. First, it uses one model instead of several models to predict multiple points inst...
Guardado en:
Autores principales: | Farhad Alizadeh, Alireza Faregh Gharamaleki, Rasoul Jalilzadeh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fad1cc943d1f4219ba404cbb03d787f8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Relationship between net primary production and climate change in different vegetation zones based on EEMD detrending – A case study of Northwest China
por: Huiyu Liu, et al.
Publicado: (2021) -
A comparative study of wavelet and empirical mode decomposition-based GPR models for river discharge relationship modeling at consecutive hydrometric stations
por: Kiyoumars Roushangar, et al.
Publicado: (2021) -
Instantaneous frequency from Hilbert-Huang transformation of digital volume pulse as indicator of diabetes and arterial stiffness in upper-middle-aged subjects
por: Hai-Cheng Wei, et al.
Publicado: (2018) -
The potential of ensemble WT-EEMD-kernel extreme learning machine techniques for prediction suspended sediment concentration in successive points of a river
por: Kiyoumars Roushangar, et al.
Publicado: (2021) -
Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
por: Ravichandra Madanu, et al.
Publicado: (2021)