Using explainable machine learning to identify patients at risk of reattendance at discharge from emergency departments
Abstract Short-term reattendances to emergency departments are a key quality of care indicator. Identifying patients at increased risk of early reattendance could help reduce the number of missed critical illnesses and could reduce avoidable utilization of emergency departments by enabling targeted...
Guardado en:
Autores principales: | F. P. Chmiel, D. K. Burns, M. Azor, F. Borca, M. J. Boniface, Z. D. Zlatev, N. M. White, T. W. V. Daniels, M. Kiuber |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fafd5da22778482f80910c9eb4e6126f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Using explainable machine learning to characterise data drift and detect emergent health risks for emergency department admissions during COVID-19
por: Christopher Duckworth, et al.
Publicado: (2021) -
A Scoping Review of Emergency Department Discharge Risk Stratification
por: Todd A. Jaffe, et al.
Publicado: (2021) -
Cost-effectiveness of direct discharge from the emergency department of patients with simple stable injuries in the Netherlands
por: Johanna M van Dongen, et al.
Publicado: (2021) -
Pharmacological blood pressure control and outcomes in patients with hypertensive crisis discharged from the emergency department.
por: Yu-Ting Lin, et al.
Publicado: (2021) -
Machine Learning Model to Identify Sepsis Patients in the Emergency Department: Algorithm Development and Validation
por: Pei-Chen Lin, et al.
Publicado: (2021)