High precision implicit function learning for forecasting supercapacitor state of health based on Gaussian process regression
Abstract State of health (SOH) prediction of supercapacitors aims to provide reliable lifetime control and avoid system failure. Gaussian process regression (GPR) has emerged for SOH prediction because of its capability of capturing nonlinear relationships between features, and tracking SOH attenuat...
Guardado en:
Autores principales: | Jiahao Ren, Junfei Cai, Jinjin Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fb1468810a154f6aa8ac62e8237402a0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The pitfalls of using Gaussian Process Regression for normative modeling.
por: Bohan Xu, et al.
Publicado: (2021) -
An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
por: Lu Cheng, et al.
Publicado: (2019) -
Use of Gaussian process regression for radiation mapping of a nuclear reactor with a mobile robot
por: Andrew West, et al.
Publicado: (2021) -
Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils: A Gaussian Process Regression Approach
por: Mahmood Ahmad, et al.
Publicado: (2021) -
Generation of Two Correlated Stationary Gaussian Processes
por: Guo-Qiang Cai, et al.
Publicado: (2021)