Multiscale 3D phenotyping of human cerebral organoids

Abstract Brain organoids grown from human pluripotent stem cells self-organize into cytoarchitectures resembling the developing human brain. These three-dimensional models offer an unprecedented opportunity to study human brain development and dysfunction. Characterization currently sacrifices spati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexandre Albanese, Justin M. Swaney, Dae Hee Yun, Nicholas B. Evans, Jenna M. Antonucci, Silvia Velasco, Chang Ho Sohn, Paola Arlotta, Lee Gehrke, Kwanghun Chung
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/fb1882f90ac742849d2c12265a68b902
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fb1882f90ac742849d2c12265a68b902
record_format dspace
spelling oai:doaj.org-article:fb1882f90ac742849d2c12265a68b9022021-12-02T11:43:44ZMultiscale 3D phenotyping of human cerebral organoids10.1038/s41598-020-78130-72045-2322https://doaj.org/article/fb1882f90ac742849d2c12265a68b9022020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78130-7https://doaj.org/toc/2045-2322Abstract Brain organoids grown from human pluripotent stem cells self-organize into cytoarchitectures resembling the developing human brain. These three-dimensional models offer an unprecedented opportunity to study human brain development and dysfunction. Characterization currently sacrifices spatial information for single-cell or histological analysis leaving whole-tissue analysis mostly unexplored. Here, we present the SCOUT pipeline for automated multiscale comparative analysis of intact cerebral organoids. Our integrated technology platform can rapidly clear, label, and image intact organoids. Algorithmic- and convolutional neural network-based image analysis extract hundreds of features characterizing molecular, cellular, spatial, cytoarchitectural, and organoid-wide properties from fluorescence microscopy datasets. Comprehensive analysis of 46 intact organoids and ~ 100 million cells reveals quantitative multiscale “phenotypes" for organoid development, culture protocols and Zika virus infection. SCOUT provides a much-needed framework for comparative analysis of emerging 3D in vitro models using fluorescence microscopy.Alexandre AlbaneseJustin M. SwaneyDae Hee YunNicholas B. EvansJenna M. AntonucciSilvia VelascoChang Ho SohnPaola ArlottaLee GehrkeKwanghun ChungNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-17 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Alexandre Albanese
Justin M. Swaney
Dae Hee Yun
Nicholas B. Evans
Jenna M. Antonucci
Silvia Velasco
Chang Ho Sohn
Paola Arlotta
Lee Gehrke
Kwanghun Chung
Multiscale 3D phenotyping of human cerebral organoids
description Abstract Brain organoids grown from human pluripotent stem cells self-organize into cytoarchitectures resembling the developing human brain. These three-dimensional models offer an unprecedented opportunity to study human brain development and dysfunction. Characterization currently sacrifices spatial information for single-cell or histological analysis leaving whole-tissue analysis mostly unexplored. Here, we present the SCOUT pipeline for automated multiscale comparative analysis of intact cerebral organoids. Our integrated technology platform can rapidly clear, label, and image intact organoids. Algorithmic- and convolutional neural network-based image analysis extract hundreds of features characterizing molecular, cellular, spatial, cytoarchitectural, and organoid-wide properties from fluorescence microscopy datasets. Comprehensive analysis of 46 intact organoids and ~ 100 million cells reveals quantitative multiscale “phenotypes" for organoid development, culture protocols and Zika virus infection. SCOUT provides a much-needed framework for comparative analysis of emerging 3D in vitro models using fluorescence microscopy.
format article
author Alexandre Albanese
Justin M. Swaney
Dae Hee Yun
Nicholas B. Evans
Jenna M. Antonucci
Silvia Velasco
Chang Ho Sohn
Paola Arlotta
Lee Gehrke
Kwanghun Chung
author_facet Alexandre Albanese
Justin M. Swaney
Dae Hee Yun
Nicholas B. Evans
Jenna M. Antonucci
Silvia Velasco
Chang Ho Sohn
Paola Arlotta
Lee Gehrke
Kwanghun Chung
author_sort Alexandre Albanese
title Multiscale 3D phenotyping of human cerebral organoids
title_short Multiscale 3D phenotyping of human cerebral organoids
title_full Multiscale 3D phenotyping of human cerebral organoids
title_fullStr Multiscale 3D phenotyping of human cerebral organoids
title_full_unstemmed Multiscale 3D phenotyping of human cerebral organoids
title_sort multiscale 3d phenotyping of human cerebral organoids
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/fb1882f90ac742849d2c12265a68b902
work_keys_str_mv AT alexandrealbanese multiscale3dphenotypingofhumancerebralorganoids
AT justinmswaney multiscale3dphenotypingofhumancerebralorganoids
AT daeheeyun multiscale3dphenotypingofhumancerebralorganoids
AT nicholasbevans multiscale3dphenotypingofhumancerebralorganoids
AT jennamantonucci multiscale3dphenotypingofhumancerebralorganoids
AT silviavelasco multiscale3dphenotypingofhumancerebralorganoids
AT changhosohn multiscale3dphenotypingofhumancerebralorganoids
AT paolaarlotta multiscale3dphenotypingofhumancerebralorganoids
AT leegehrke multiscale3dphenotypingofhumancerebralorganoids
AT kwanghunchung multiscale3dphenotypingofhumancerebralorganoids
_version_ 1718395378957549568