Causality Distance Measures for Multivariate Time Series with Applications
In this work, we focus on the development of new distance measure algorithms, namely, the Causality Within Groups (CAWG), the Generalized Causality Within Groups (GCAWG) and the Causality Between Groups (CABG), all of which are based on the well-known Granger causality. The proposed distances togeth...
Guardado en:
Autores principales: | Achilleas Anastasiou, Peter Hatzopoulos, Alex Karagrigoriou, George Mavridoglou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fb23504d23f24182bcff01db1ad0188b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A review of the Granger-causality fallacy
por: Mariusz Maziarz
Publicado: (2015) -
Multivariate Extreme Learning Machine Based AutoEncoder for Electricity Consumption Series Clustering
por: Kaihong Zheng, et al.
Publicado: (2021) -
Nonlinear extensions of new causality
por: Pedro C. Nariyoshi, et al.
Publicado: (2021) -
Geopolitical tensions, opec news, and the oil price: A Granger causality analysis
por: Fernandois,Antonio, et al.
Publicado: (2020) -
Predictive Error Compensating Wavelet Neural Network Model for Multivariable Time Series Prediction
por: Ajla Kulaglic, et al.
Publicado: (2021)