Sampling bias overestimates climate change impacts on forest growth in the southwestern United States
Sampling strategies may bias tree-ring datasets to not accurately represent the regional response to climate change. Here, Klesse et al. use a new representative dataset to show that the International Tree-Ring Data Bank in the U.S. Southwest overestimates climate sensitivity of forests by 41–59%
Guardado en:
Autores principales: | Stefan Klesse, R. Justin DeRose, Christopher H. Guiterman, Ann M. Lynch, Christopher D. O’Connor, John D. Shaw, Margaret E. K. Evans |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fb2a22e2d7d542e89b3895880661ae15 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Random Sampling Process Leads to Overestimation of β-Diversity of Microbial Communities
por: Jizhong Zhou, et al.
Publicado: (2013) -
Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling
por: Huanjiong Wang, et al.
Publicado: (2020) -
Color and time perception: Evidence for temporal overestimation of blue stimuli
por: S. Thönes, et al.
Publicado: (2018) -
Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species.
por: Somayeh Zangiabadi, et al.
Publicado: (2021) -
Mobility overestimation due to gated contacts in organic field-effect transistors
por: Emily G. Bittle, et al.
Publicado: (2016)