Complete Genome Sequence of Two Deep-Sea <i>Streptomyces</i> Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential
The deep-sea constitutes a true unexplored frontier and a potential source of innovative drug scaffolds. Here, we present the genome sequence of two novel marine actinobacterial strains, MA3_2.13 and S07_1.15, isolated from deep-sea samples (sediments and sponge) and collected at Madeira archipelago...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fb37d6f97e9e4f1d852ab86880935bb7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fb37d6f97e9e4f1d852ab86880935bb7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fb37d6f97e9e4f1d852ab86880935bb72021-11-25T18:12:52ZComplete Genome Sequence of Two Deep-Sea <i>Streptomyces</i> Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential10.3390/md191106211660-3397https://doaj.org/article/fb37d6f97e9e4f1d852ab86880935bb72021-11-01T00:00:00Zhttps://www.mdpi.com/1660-3397/19/11/621https://doaj.org/toc/1660-3397The deep-sea constitutes a true unexplored frontier and a potential source of innovative drug scaffolds. Here, we present the genome sequence of two novel marine actinobacterial strains, MA3_2.13 and S07_1.15, isolated from deep-sea samples (sediments and sponge) and collected at Madeira archipelago (NE Atlantic Ocean; Portugal). The de novo assembly of both genomes was achieved using a hybrid strategy that combines short-reads (Illumina) and long-reads (PacBio) sequencing data. Phylogenetic analyses showed that strain MA3_2.13 is a new species of the <i>Streptomyces</i> genus, whereas strain S07_1.15 is closely related to the type strain of <i>Streptomyces xinghaiensis</i>. In silico analysis revealed that the total length of predicted biosynthetic gene clusters (BGCs) accounted for a high percentage of the MA3_2.13 genome, with several potential new metabolites identified. Strain S07_1.15 had, with a few exceptions, a predicted metabolic profile similar to <i>S. xinghaiensis</i>. In this work, we implemented a straightforward approach for generating high-quality genomes of new bacterial isolates and analyse in silico their potential to produce novel NPs. The inclusion of these in silico dereplication steps allows to minimize the rediscovery rates of traditional natural products screening methodologies and expedite the drug discovery process.Pedro AlbuquerqueInês RibeiroSofia CorreiaAna Paula MuchaPaula TamagniniAndreia Braga-HenriquesMaria de Fátima CarvalhoMarta V. MendesMDPI AGarticle<i>Streptomyces</i>deep-sea actinobacteriade novo assemblygenome miningnatural productsBiology (General)QH301-705.5ENMarine Drugs, Vol 19, Iss 621, p 621 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
<i>Streptomyces</i> deep-sea actinobacteria de novo assembly genome mining natural products Biology (General) QH301-705.5 |
spellingShingle |
<i>Streptomyces</i> deep-sea actinobacteria de novo assembly genome mining natural products Biology (General) QH301-705.5 Pedro Albuquerque Inês Ribeiro Sofia Correia Ana Paula Mucha Paula Tamagnini Andreia Braga-Henriques Maria de Fátima Carvalho Marta V. Mendes Complete Genome Sequence of Two Deep-Sea <i>Streptomyces</i> Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential |
description |
The deep-sea constitutes a true unexplored frontier and a potential source of innovative drug scaffolds. Here, we present the genome sequence of two novel marine actinobacterial strains, MA3_2.13 and S07_1.15, isolated from deep-sea samples (sediments and sponge) and collected at Madeira archipelago (NE Atlantic Ocean; Portugal). The de novo assembly of both genomes was achieved using a hybrid strategy that combines short-reads (Illumina) and long-reads (PacBio) sequencing data. Phylogenetic analyses showed that strain MA3_2.13 is a new species of the <i>Streptomyces</i> genus, whereas strain S07_1.15 is closely related to the type strain of <i>Streptomyces xinghaiensis</i>. In silico analysis revealed that the total length of predicted biosynthetic gene clusters (BGCs) accounted for a high percentage of the MA3_2.13 genome, with several potential new metabolites identified. Strain S07_1.15 had, with a few exceptions, a predicted metabolic profile similar to <i>S. xinghaiensis</i>. In this work, we implemented a straightforward approach for generating high-quality genomes of new bacterial isolates and analyse in silico their potential to produce novel NPs. The inclusion of these in silico dereplication steps allows to minimize the rediscovery rates of traditional natural products screening methodologies and expedite the drug discovery process. |
format |
article |
author |
Pedro Albuquerque Inês Ribeiro Sofia Correia Ana Paula Mucha Paula Tamagnini Andreia Braga-Henriques Maria de Fátima Carvalho Marta V. Mendes |
author_facet |
Pedro Albuquerque Inês Ribeiro Sofia Correia Ana Paula Mucha Paula Tamagnini Andreia Braga-Henriques Maria de Fátima Carvalho Marta V. Mendes |
author_sort |
Pedro Albuquerque |
title |
Complete Genome Sequence of Two Deep-Sea <i>Streptomyces</i> Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential |
title_short |
Complete Genome Sequence of Two Deep-Sea <i>Streptomyces</i> Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential |
title_full |
Complete Genome Sequence of Two Deep-Sea <i>Streptomyces</i> Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential |
title_fullStr |
Complete Genome Sequence of Two Deep-Sea <i>Streptomyces</i> Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential |
title_full_unstemmed |
Complete Genome Sequence of Two Deep-Sea <i>Streptomyces</i> Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential |
title_sort |
complete genome sequence of two deep-sea <i>streptomyces</i> isolates from madeira archipelago and evaluation of their biosynthetic potential |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/fb37d6f97e9e4f1d852ab86880935bb7 |
work_keys_str_mv |
AT pedroalbuquerque completegenomesequenceoftwodeepseaistreptomycesiisolatesfrommadeiraarchipelagoandevaluationoftheirbiosyntheticpotential AT inesribeiro completegenomesequenceoftwodeepseaistreptomycesiisolatesfrommadeiraarchipelagoandevaluationoftheirbiosyntheticpotential AT sofiacorreia completegenomesequenceoftwodeepseaistreptomycesiisolatesfrommadeiraarchipelagoandevaluationoftheirbiosyntheticpotential AT anapaulamucha completegenomesequenceoftwodeepseaistreptomycesiisolatesfrommadeiraarchipelagoandevaluationoftheirbiosyntheticpotential AT paulatamagnini completegenomesequenceoftwodeepseaistreptomycesiisolatesfrommadeiraarchipelagoandevaluationoftheirbiosyntheticpotential AT andreiabragahenriques completegenomesequenceoftwodeepseaistreptomycesiisolatesfrommadeiraarchipelagoandevaluationoftheirbiosyntheticpotential AT mariadefatimacarvalho completegenomesequenceoftwodeepseaistreptomycesiisolatesfrommadeiraarchipelagoandevaluationoftheirbiosyntheticpotential AT martavmendes completegenomesequenceoftwodeepseaistreptomycesiisolatesfrommadeiraarchipelagoandevaluationoftheirbiosyntheticpotential |
_version_ |
1718411538689163264 |