Multi-View Feature Fusion Based Four Views Model for Mammogram Classification Using Convolutional Neural Network
Breast cancer is the second most common cause of cancer-related deaths among women. Early detection leads to better prognosis and saves lives. The 5-year survival rate of breast cancer is 99% if it is located only in breast. Conventional computer-aided diagnosis (CADx) systems for breast...
Guardado en:
Autores principales: | Hasan Nasir Khan, Ahmad Raza Shahid, Basit Raza, Amir Hanif Dar, Hani Alquhayz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fb4f64423fcd474abe26c2ae4cf16021 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The association between rurality, sociodemographic characteristics, and mammogram screening outcomes among a sample of low-income uninsured women
por: Morgan Kassabian, et al.
Publicado: (2021) -
King Abdulaziz University Breast Cancer Mammogram Dataset (KAU-BCMD)
por: Asmaa S. Alsolami, et al.
Publicado: (2021) -
Comparison of Current Deep Convolutional Neural Networks for the Segmentation of Breast Masses in Mammograms
por: Andres Anaya-Isaza, et al.
Publicado: (2021) -
MV-LFN: Multi-view based local information fusion network for 3D shape recognition
por: Jing Zhang, et al.
Publicado: (2021) -
Contralateral Breast Primary in Breast Cancer Survivors-An Experience from a Tertiary Care Centre in Thiruvananthapuram, Kerala, India
por: Manu Paul, et al.
Publicado: (2021)