A globally convergent algorithm for MPCC

We propose a penalty formulation based on the new regularization scheme for mathematical programs with complementarity constraints (MPCCs). We present an active set method which solves a sequence of penalty-regularized problems. We study global convergence properties of the method under the MPCC-lin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Abdeslam Kadrani, JeanPierre Dussault, Abdelhamid Benchakroun
Formato: article
Lenguaje:EN
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://doaj.org/article/fb5f8a11e4af44cf89cd48f14e647243
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fb5f8a11e4af44cf89cd48f14e647243
record_format dspace
spelling oai:doaj.org-article:fb5f8a11e4af44cf89cd48f14e6472432021-12-02T05:00:45ZA globally convergent algorithm for MPCC2192-440610.1007/s13675-015-0044-9https://doaj.org/article/fb5f8a11e4af44cf89cd48f14e6472432015-09-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2192440621000472https://doaj.org/toc/2192-4406We propose a penalty formulation based on the new regularization scheme for mathematical programs with complementarity constraints (MPCCs). We present an active set method which solves a sequence of penalty-regularized problems. We study global convergence properties of the method under the MPCC-linear independence constraint qualification. In particular, any accumulation point of the generated iterates is a strong stationary point if the penalty parameter is bounded. Otherwise, the convergence to points having a certain stationarity property is established. A strategy for updating the penalty parameter is proposed and numerical results on a collection of test problems are reported.Abdeslam KadraniJeanPierre DussaultAbdelhamid BenchakrounElsevierarticle49M3790C3390C52Applied mathematics. Quantitative methodsT57-57.97Electronic computers. Computer scienceQA75.5-76.95ENEURO Journal on Computational Optimization, Vol 3, Iss 3, Pp 263-296 (2015)
institution DOAJ
collection DOAJ
language EN
topic 49M37
90C33
90C52
Applied mathematics. Quantitative methods
T57-57.97
Electronic computers. Computer science
QA75.5-76.95
spellingShingle 49M37
90C33
90C52
Applied mathematics. Quantitative methods
T57-57.97
Electronic computers. Computer science
QA75.5-76.95
Abdeslam Kadrani
JeanPierre Dussault
Abdelhamid Benchakroun
A globally convergent algorithm for MPCC
description We propose a penalty formulation based on the new regularization scheme for mathematical programs with complementarity constraints (MPCCs). We present an active set method which solves a sequence of penalty-regularized problems. We study global convergence properties of the method under the MPCC-linear independence constraint qualification. In particular, any accumulation point of the generated iterates is a strong stationary point if the penalty parameter is bounded. Otherwise, the convergence to points having a certain stationarity property is established. A strategy for updating the penalty parameter is proposed and numerical results on a collection of test problems are reported.
format article
author Abdeslam Kadrani
JeanPierre Dussault
Abdelhamid Benchakroun
author_facet Abdeslam Kadrani
JeanPierre Dussault
Abdelhamid Benchakroun
author_sort Abdeslam Kadrani
title A globally convergent algorithm for MPCC
title_short A globally convergent algorithm for MPCC
title_full A globally convergent algorithm for MPCC
title_fullStr A globally convergent algorithm for MPCC
title_full_unstemmed A globally convergent algorithm for MPCC
title_sort globally convergent algorithm for mpcc
publisher Elsevier
publishDate 2015
url https://doaj.org/article/fb5f8a11e4af44cf89cd48f14e647243
work_keys_str_mv AT abdeslamkadrani agloballyconvergentalgorithmformpcc
AT jeanpierredussault agloballyconvergentalgorithmformpcc
AT abdelhamidbenchakroun agloballyconvergentalgorithmformpcc
AT abdeslamkadrani globallyconvergentalgorithmformpcc
AT jeanpierredussault globallyconvergentalgorithmformpcc
AT abdelhamidbenchakroun globallyconvergentalgorithmformpcc
_version_ 1718400868280172544