A globally convergent algorithm for MPCC
We propose a penalty formulation based on the new regularization scheme for mathematical programs with complementarity constraints (MPCCs). We present an active set method which solves a sequence of penalty-regularized problems. We study global convergence properties of the method under the MPCC-lin...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fb5f8a11e4af44cf89cd48f14e647243 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fb5f8a11e4af44cf89cd48f14e647243 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fb5f8a11e4af44cf89cd48f14e6472432021-12-02T05:00:45ZA globally convergent algorithm for MPCC2192-440610.1007/s13675-015-0044-9https://doaj.org/article/fb5f8a11e4af44cf89cd48f14e6472432015-09-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2192440621000472https://doaj.org/toc/2192-4406We propose a penalty formulation based on the new regularization scheme for mathematical programs with complementarity constraints (MPCCs). We present an active set method which solves a sequence of penalty-regularized problems. We study global convergence properties of the method under the MPCC-linear independence constraint qualification. In particular, any accumulation point of the generated iterates is a strong stationary point if the penalty parameter is bounded. Otherwise, the convergence to points having a certain stationarity property is established. A strategy for updating the penalty parameter is proposed and numerical results on a collection of test problems are reported.Abdeslam KadraniJeanPierre DussaultAbdelhamid BenchakrounElsevierarticle49M3790C3390C52Applied mathematics. Quantitative methodsT57-57.97Electronic computers. Computer scienceQA75.5-76.95ENEURO Journal on Computational Optimization, Vol 3, Iss 3, Pp 263-296 (2015) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
49M37 90C33 90C52 Applied mathematics. Quantitative methods T57-57.97 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
49M37 90C33 90C52 Applied mathematics. Quantitative methods T57-57.97 Electronic computers. Computer science QA75.5-76.95 Abdeslam Kadrani JeanPierre Dussault Abdelhamid Benchakroun A globally convergent algorithm for MPCC |
description |
We propose a penalty formulation based on the new regularization scheme for mathematical programs with complementarity constraints (MPCCs). We present an active set method which solves a sequence of penalty-regularized problems. We study global convergence properties of the method under the MPCC-linear independence constraint qualification. In particular, any accumulation point of the generated iterates is a strong stationary point if the penalty parameter is bounded. Otherwise, the convergence to points having a certain stationarity property is established. A strategy for updating the penalty parameter is proposed and numerical results on a collection of test problems are reported. |
format |
article |
author |
Abdeslam Kadrani JeanPierre Dussault Abdelhamid Benchakroun |
author_facet |
Abdeslam Kadrani JeanPierre Dussault Abdelhamid Benchakroun |
author_sort |
Abdeslam Kadrani |
title |
A globally convergent algorithm for MPCC |
title_short |
A globally convergent algorithm for MPCC |
title_full |
A globally convergent algorithm for MPCC |
title_fullStr |
A globally convergent algorithm for MPCC |
title_full_unstemmed |
A globally convergent algorithm for MPCC |
title_sort |
globally convergent algorithm for mpcc |
publisher |
Elsevier |
publishDate |
2015 |
url |
https://doaj.org/article/fb5f8a11e4af44cf89cd48f14e647243 |
work_keys_str_mv |
AT abdeslamkadrani agloballyconvergentalgorithmformpcc AT jeanpierredussault agloballyconvergentalgorithmformpcc AT abdelhamidbenchakroun agloballyconvergentalgorithmformpcc AT abdeslamkadrani globallyconvergentalgorithmformpcc AT jeanpierredussault globallyconvergentalgorithmformpcc AT abdelhamidbenchakroun globallyconvergentalgorithmformpcc |
_version_ |
1718400868280172544 |