Synthesis process optimization and field trials of insecticide candidate NKY-312
Abstract NKY-312 is a highly active insecticide candidate with a simple structure. In order to carry out field trials and toxicity tests, its scale preparation is urgently needed, but the final step of the original synthetic route is a low-yielding sulfonylation reaction that generates a high propor...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fb706e0f6a854ed59ec6de2e4cc034ea |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract NKY-312 is a highly active insecticide candidate with a simple structure. In order to carry out field trials and toxicity tests, its scale preparation is urgently needed, but the final step of the original synthetic route is a low-yielding sulfonylation reaction that generates a high proportion of a bissulfonylated by-product, its foliar contact activities against bean aphid (80% at 100 mg/kg) is significantly lower than that of NKY-312 (100% at 5 mg/kg), and uses pyridine as the solvent. In this work, we developed a highly selective (4-dimethylaminopyridine)-catalyzed monosulfonylation reaction that avoids the use of pyridine as a solvent and shows a much higher yield (98% yield with 98% HPLC purity) than the original reaction (68%). Then, we carried out the field trials and toxicity tests. In field experiments, the activities of NKY-312 against rice planthopper and wheat aphid were equal to pymetrozine and imidacloprid respectively. |
---|