Control of criticality and computation in spiking neuromorphic networks with plasticity
Designing efficient artificial networks able to quickly converge to optimal performance for a given task remains a challenge. Here, the authors demonstrate a relation between criticality, task-performance and information theoretic fingerprint in a spiking neuromorphic network with synaptic plasticit...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fb7c0a50753d437fb6161c1380bc2dcd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fb7c0a50753d437fb6161c1380bc2dcd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fb7c0a50753d437fb6161c1380bc2dcd2021-12-02T15:57:19ZControl of criticality and computation in spiking neuromorphic networks with plasticity10.1038/s41467-020-16548-32041-1723https://doaj.org/article/fb7c0a50753d437fb6161c1380bc2dcd2020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16548-3https://doaj.org/toc/2041-1723Designing efficient artificial networks able to quickly converge to optimal performance for a given task remains a challenge. Here, the authors demonstrate a relation between criticality, task-performance and information theoretic fingerprint in a spiking neuromorphic network with synaptic plasticity.Benjamin CramerDavid StöckelMarkus KreftMichael WibralJohannes SchemmelKarlheinz MeierViola PriesemannNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Benjamin Cramer David Stöckel Markus Kreft Michael Wibral Johannes Schemmel Karlheinz Meier Viola Priesemann Control of criticality and computation in spiking neuromorphic networks with plasticity |
description |
Designing efficient artificial networks able to quickly converge to optimal performance for a given task remains a challenge. Here, the authors demonstrate a relation between criticality, task-performance and information theoretic fingerprint in a spiking neuromorphic network with synaptic plasticity. |
format |
article |
author |
Benjamin Cramer David Stöckel Markus Kreft Michael Wibral Johannes Schemmel Karlheinz Meier Viola Priesemann |
author_facet |
Benjamin Cramer David Stöckel Markus Kreft Michael Wibral Johannes Schemmel Karlheinz Meier Viola Priesemann |
author_sort |
Benjamin Cramer |
title |
Control of criticality and computation in spiking neuromorphic networks with plasticity |
title_short |
Control of criticality and computation in spiking neuromorphic networks with plasticity |
title_full |
Control of criticality and computation in spiking neuromorphic networks with plasticity |
title_fullStr |
Control of criticality and computation in spiking neuromorphic networks with plasticity |
title_full_unstemmed |
Control of criticality and computation in spiking neuromorphic networks with plasticity |
title_sort |
control of criticality and computation in spiking neuromorphic networks with plasticity |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/fb7c0a50753d437fb6161c1380bc2dcd |
work_keys_str_mv |
AT benjamincramer controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity AT davidstockel controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity AT markuskreft controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity AT michaelwibral controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity AT johannesschemmel controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity AT karlheinzmeier controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity AT violapriesemann controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity |
_version_ |
1718385367934042112 |