Control of criticality and computation in spiking neuromorphic networks with plasticity

Designing efficient artificial networks able to quickly converge to optimal performance for a given task remains a challenge. Here, the authors demonstrate a relation between criticality, task-performance and information theoretic fingerprint in a spiking neuromorphic network with synaptic plasticit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Benjamin Cramer, David Stöckel, Markus Kreft, Michael Wibral, Johannes Schemmel, Karlheinz Meier, Viola Priesemann
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/fb7c0a50753d437fb6161c1380bc2dcd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fb7c0a50753d437fb6161c1380bc2dcd
record_format dspace
spelling oai:doaj.org-article:fb7c0a50753d437fb6161c1380bc2dcd2021-12-02T15:57:19ZControl of criticality and computation in spiking neuromorphic networks with plasticity10.1038/s41467-020-16548-32041-1723https://doaj.org/article/fb7c0a50753d437fb6161c1380bc2dcd2020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16548-3https://doaj.org/toc/2041-1723Designing efficient artificial networks able to quickly converge to optimal performance for a given task remains a challenge. Here, the authors demonstrate a relation between criticality, task-performance and information theoretic fingerprint in a spiking neuromorphic network with synaptic plasticity.Benjamin CramerDavid StöckelMarkus KreftMichael WibralJohannes SchemmelKarlheinz MeierViola PriesemannNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Benjamin Cramer
David Stöckel
Markus Kreft
Michael Wibral
Johannes Schemmel
Karlheinz Meier
Viola Priesemann
Control of criticality and computation in spiking neuromorphic networks with plasticity
description Designing efficient artificial networks able to quickly converge to optimal performance for a given task remains a challenge. Here, the authors demonstrate a relation between criticality, task-performance and information theoretic fingerprint in a spiking neuromorphic network with synaptic plasticity.
format article
author Benjamin Cramer
David Stöckel
Markus Kreft
Michael Wibral
Johannes Schemmel
Karlheinz Meier
Viola Priesemann
author_facet Benjamin Cramer
David Stöckel
Markus Kreft
Michael Wibral
Johannes Schemmel
Karlheinz Meier
Viola Priesemann
author_sort Benjamin Cramer
title Control of criticality and computation in spiking neuromorphic networks with plasticity
title_short Control of criticality and computation in spiking neuromorphic networks with plasticity
title_full Control of criticality and computation in spiking neuromorphic networks with plasticity
title_fullStr Control of criticality and computation in spiking neuromorphic networks with plasticity
title_full_unstemmed Control of criticality and computation in spiking neuromorphic networks with plasticity
title_sort control of criticality and computation in spiking neuromorphic networks with plasticity
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/fb7c0a50753d437fb6161c1380bc2dcd
work_keys_str_mv AT benjamincramer controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
AT davidstockel controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
AT markuskreft controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
AT michaelwibral controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
AT johannesschemmel controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
AT karlheinzmeier controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
AT violapriesemann controlofcriticalityandcomputationinspikingneuromorphicnetworkswithplasticity
_version_ 1718385367934042112